Acorn Assembler

Acorn Assembler

a
Acorn@

e

B S e

Copyright © 1994 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department,

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However, Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the use of any
information or particulars in this manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your
supplier is available to help resolve any queries you might have.

ACORN, the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN | 85250 167 7

Part number 0484,233

Issue 1, December 1994

Contents

e

Contents iii

Introduction 1
Assembler tools 2
This user guide 2
Conventions used in this manual 3

Part 1 — Using the assembler 5

ObjAsm 7
Starting ObjAsm 7
The SetUp dialogue box 9
The SetUp menu 10
ObjAsm output 18
ObjAsm icon bar menu 20
Example ObjAsm session 21
ObjAsm command lines 22

Part 2 — Assembly language details 27

The ARM CPU 29

Introduction 29

Block diagram of core 31
26 bit architecture 32

32 bit architecture 36
Exceptions 40

I

i

Contents

T : R —

ARM assembly language 47
General 47
Input lines 47
AREAs 47
ORGC and ABS 49
Symbols 49
Labels 50
Local labels 50
Comments 5]
Constants 51
The END directive 51

CPU instruction set 53
The condition field 53
Instruction timings 54
The barrel shifter 55
Shift types 57
Coprocessor instructions 62
Branch, Branch with Link (B, BL}] 63
Data processing 66
PSR transfer (MRS, MSR) 74
Multiply and Multiply-Accumulate (MUL, MLA) 78
Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL) 81
Single data transfer (LDR, STR} 83
Block data transfer (LDM, STM) 88
Single data swap (SWP) 96
Software interrupt (SWI) 98
Coprocessor data operations (CDP) 100
Coprocessor data transfers (LLDC, STC) 102
Coprocessor register transfers (MCR, MRC) 106
Undefined instructions 109
Instruction set summary 110
Further instructions 114
Extended range immediate constants |14
The ADR instruction 115
The ADRL instruction 115
Literals 116

Contents

R s

T A R R

Floating point instructions 117
Programmer's model 118
Available systems 118
Precision 119
Floating point number formats 119
Floating point status register 124
Floating Point Control Register 129
Assembler directives and syntax 131
The instruction set 132
Finding out more... 138

Directives 139
Storage reservation and initialisation — DCB, DCW and DCD 139
Floating point store initialisation — DCFS and DCFD 140
Describing the layout of store — » and # 140
Organisational directives — END, ORG, LTORG and KEEP 141
Links to other object files = IMPORT and EXPORT 142
Links to other source files — GET/INCLUDE 142
Diagnostic generation — ASSERT and | 142
Dynamic listing options — OPT 143
Titles — TTL and SUBT 143
Miscelianeous directives — ALIGN, NOFP, RLIST and ENTRY 144

Symbolic capabilities 145
Setting constants 145
Local and global variables — GBL, LCL and SET 146
Variable substitution —= & 147
Built-in variables 147

Expressions and operators 149
Unary operators 149
Binary operators 150

Conditional and repetitive assembly 153
Conditional assembly 153
Repetitive assembly 156

Contents

o O T

R R

Macros 157
Syntax 158
Local variables 159
MEXIT directive 160
Default values 160
Macro substitution method 160
Nesting macros 161
A division macro 162

Part 3 — Developing software for RISC OS 165

Exception handling 167
RISC OS processor configuration and modes 167
The pre-veneers 167
Claiming the hardware vectors 168
Writing to the FIQ vector 168

Writing relocatable modules in assembler 171
Assembler directives 172
Example 173

Interworking assembler with C 175
Examples 175

Part 4 — Appendixes 179
Changes to the assembler 181
Error messages 183

Example assembler fragments 189
Using the conditional instructions 189
Pseudo-random binary sequence generator 190
Multiplication by a constant 191
Loading a word from an unknown alignment 192
Sign/zero extension of a half word 192
Return setting condition codes 192
Full multiply 193

Vi

.
|
]
-]
]
|
|
]
8
|
i
g
i
]
'Q
[]
§
.
|
%
|
| 1
&
&
i
-
]
?i%
&

S A R e

Warnings on the use of ARM assembler 195
Restrictions to the ARM instruction set 196
Instructions and code sequences to avoid 197
Static ARM problems 208

Support for AAsm source 211
The -ABSolute option 211

Index 213

Contents

vii

viii

o s e s e

1 Introduction

T T ———

Acorn Assembler is a development environment for producing RISC OS desktop
applications and relocatable modules written in ARM assembly language. It
consists of a number of programming tools which are RISC OS desktop
applications. These tools interact in ways designed to help your productivity.
forming an extendable environment integrated by the RISC OS desktop. Acorn
Assembler may be used with Acorn C/C++ (a part of this product) to provide an
environment for mixed C, C++ and assembler development.

This product includes tools to:

edit program source and other text files
search and examine text files

examine some hinary files

assemble small assembly language programs

assemble and construct more complex programs under the control of
makefiles, these being set up from a simple desktop interface

squeeze finished program images to occupy less disk space
construct linkable libraries

debug RISC OS desktop applications interactively

design RISC OS desktop interfaces and test their functionality

use the Toolbox to interact with those interfaces.

Most of the tools in this product are also of general use for constructing
applications in other programming languages, such as C and C++. These
non-language-specific tools are described in the accompanying Desktop Tools guide.

Installation

Installation of Acorn Assembler is described in the chapter lnstalling Acorn C/C++ on
page 7 of the accompanying Desktop Tools guide.

Assembler fools

L

g

S T T R e T R R e o T T T S R R e

Assembler tools

This user guide

The assembler provided includes the following features:

e full support of the ARM instruction set, for all versions up to and including the
ARMTM core

e ¢global and local label capability

e powerful macro processing

e comprehensive expression handling

e conditional assembly

@ repetitive assembly

e comprehensive symbol table printouts
® pseudo-opcodes to control printout.

Objasm

The Assembler ObjAsm creates object files which cannot be executed directly, but
must first be linked using the Link tool. It is often most efficient to construct larger
programs from several portions, assembling each portion with ObjAsm before
linking them all together with Link. Object files linked with those produced by
ObjAsm may be produced from some programming language other than
assembler, for example C.

The Link tool is described in the chapter Link on page 137 of the accompanying
Desktop Tools guide.

This document is a reference guide to ObjAsm, which is the only tool in this
product which is not used for programming in other languages. The others are
described in the accompanying Acorn C/C++ and Desktop Tools guides. It is assumed
that you are familiar with other relevant Archimedes documentation, such as the:

® Welcome Guide supplied with your computer
® RISC OS 3 User Guide
® RISC OS 3 Programmer's Reference Manual,

Introduction

T O T A e e T I T

You may also find useful one or more of the following books:

® ARM Assembly Language Programming / P|. Cockerell — Computer Concepts/MTC,
1987.

® Archimedes Assembly Language: A Dabhand Guide / M. Ginns — Manchester, UK:
Dabs Press, 1988,

® The ARM RISC Chip — A Programmer's Guide / A van Someren and C. Atack —
Wokingham, UK: Addison-Wesley, 1993,

Note on program examples

Both general and specific examples of syntax and screen output are given, but
there are occasions where the full syntax of an instruction and its accompanying
screen appearance would obscure the specific points being made It follows,
therefore, that not all the examples given in the text can be used directly since they
are incomplete.

Conventions used in this manual

The Assembler has its own interpretations of the punctuation symbols and special
symbols which are available from the keyboard. These are:

! # $ % & A @ 1)
| | { } | ; | | | "

it / * B < = ?

In order to distinguish between characters used in syntax and descriptive or
explanatory characters, typewriter style typeface is used to indicate both text which
appears on the screen and text which can be typed on the keyboard. This is so that
the position of relevant spaces is clearly indicated.

The following typographical conventions are used throughout this manual:

Convention Meaning

filename Text that you must replace with the name of a file, register,
variable or whatever is indicated.

&l1C Hexadecimal numbers are preceded with an ampersand.
winstruction» [talic guillemots «» enclose optional items in the syntax.

For example, the Assembler ObjAsm accepts a three field
source line which may be expressed in the form:

«instruction» «label» «;commenty

ALIGN Text that you type exactly as it appears in the manual For
example:

L321 ADD Ra,Ra,Ra,LSL #1 ;multiply by 3

Part 1 — Using the assembler

S - e S

2 ObjAsm

R e e e

bjAsm is the ARM assembler forming part of the Acorn C/C++ product, It

processes text files containing program source written in ARM assembly
language into linkable object files. Object files can be linked by the Link tool with
each other or with libraries of object files to form executable image files or
relocatable modules. ObjAsm multitasks under the RISC OS desktop, allowing
other tasks to proceed while it operates.

The sources for large programs can be split into several files, each of which anly
need be re-assembled to an object file when you have altered it.

An example use of ObjAsm would be to construct a binary image file | RunImage
in a RISC OS desktop application from the two source files s. interface and
s.portable. ObjAsm processes the source files to form o.interface and
o.portable, which the Link tool processes to form !RunImage.

The controls of ObjAsm are similar Lo those of other non-interactive Desktop tools,
with the common features described in the chapter General features on page 103 of
the accompanying Desklop Tools guide. You adjust options for the next assembly
operation on a SetUp dialogue box and menu which by default appear when you
click Select on the main icon or drag a source file to it. Once you have set options
you click on a Run action icon and the assembly starts. While the assembly is
running output windows display any text messages from the assembler and allow
you to stop the job if you wish.

There is no file type to double click on to start ObjAsm — it owns no file type unlike,
for example, Draw,

Starting ObjAsm

Like other non-interactive Desktop tools, ObjAsm can be used under the
management of Make, with its assembly options specified by the makefile passed to
Make. For such managed use, ObjAsm is started automatically by Make; you don't
have to load ObjAsm onto the icon bar,

Starting ObjAsm

e e o e o O T e

To use ObjAsm directly, unmanaged by Make, first open a directory display on the
AcornC_C++.Tools directory, then double click Select on !ObjAsm. The ObjAsm
main icon appears on the icon bar:

ObjAsm

Clicking Select on this icon or dragging an assembly language source file from a
directory display to this icon brings up the ObjAsm SetUp dialogue box:

2 = PR T

 Saurce | l |
[-
Nhowes || Jbag i1l

Source will appear containing the name of the last filename entered there, or
empty if there isn't one,

Dragging a file on to the icon will bring up the dialogue box and automatically
insert the dragged filename as the Source file.

Clicking Menu on the SetUp dialogue box brings up the ObjAsm SetUp menu:

Command line B
No APCS registers
C strings
Upper case
CPU P>
Define B
v NoCache
MaxCache B
Suppress warmings
| Ermors to file B
| Listing B
NoTerse
| Width
Length >
Cross reference
' Work directory =
[Others ™~

ObjAsm

O R B R T T T T T T T s s s e s i i A R ey S S

The SetUp dialogue box and menu specify the next assembly job to be done. You
start the next job by clicking Run on the dialogue box (or Command line menu
dialogue box). Clicking Cancel removes the SetUp dialogue box and clears any
changes you have just made to the options settings back to the state before you
brought up the SetUp box. The options last until you adjust them again or
IObjAsm is reloaded. You can also save them for future use with an option from the
main icon menu.

The SetUp dialogue box

When the SetUp dialogue box is displayed the Source writable icon contains the
name of the source file to be assembled. The sourcefile can be specified in two
Ways:

e Ifthe SetUp box is obtained by clicking on the main ObjAsm icon, it comes up
with the sourcefile from the previous setting. This helps you repeat a previous
assembly, as clicking on the Run action icon repeats the last job if there was
one.

e Ifthe SetUp box appears as a result of dragging a source file containing
assembly language text to the main icon, the source file will be the same as
the dragged source file.

When the SetUp box appears the Source icon has input focus, and can be edited in
the normal RISC OS fashion. If a further source file is selected in a directory display
and drageed to Source, its name replaces the one already there.

Include

The Include SetUp dialogue box icon adds directories to the source file search
path so that arguments to GET/INCLUDE directives (see page 142) do not need to
be fully qualified. The search rule used is similar to the ANSI C search rule — the
current place being the directory in which the current file was found.

The directories are searched in the order in which they are given in the Include
icon.

Options

The Throwback option switches editor throwback on (the default) or off. When
enabled, if the DDEUtils module and SrcEdit are loaded, any assembly errors
cause the editor to display an error browser. Double clicking Select on an error line
in this browser makes the editor display the source file containing the error, with
the offending line highlighted. For more details, see the chapter SrcEdit on page 73
of the accompanying Desklop Tools guide.

The SetUp menu

e c

T e e e e

The Debug option switches on or off the production of debugging tables. When
enabled, extra information is included in the output object file which enables
source level debugging of the linked image (as long as Link's Debug option is also
enabled] by the DDT debugger If this option is disabled, any image file finally
produced can only be debugged at machine level. Source level debugging allows
the current execution position to be indicated as a displayed line of your source,
whereas machine level debugging only shows the position on a disassembly of
memary.

The SetUp menu

The command line

10

The ObjAsm RISC OS desktop interface works by driving an ObjAsm tool
underneath with a command line constructed from your SetUp options. The
Command line item at the top of the SetUp menu leads to a small dialogue box in
which the command line equivalent of the current SetUp options is displayed.

No APCS registers
C strings
Upper case
CPU
Define P
v NoCache
MaxCache P
Suppress warnings
Erors to file b
Listing ?«
NoTerse
Width B
Length b
Cross reference
v Work directory b
Others B

The Run action icon in this dialogue box starts assembly in the same way as that in
the main SetUp box. Pressing Return in the writable icon in this box has the same
effect. Before starting assembly from the command line box, you can edit the
command line textually, although this is not normally useful.

ObjAsm

i

O T R e e . L

Controlling syntax

The next few entries in the SetUp menu all control the acceptable syntax for the
Assembler:

No APCS registers specifies whether the variant of the ARM Procedure Call
Standard used by RISC OS is in use, or the APCS is not in use at all. By default the
APCS is in use, and ObjAsm pre-declares extra register names and variables, and
also specifies some attributes of cade areas:

e The following extra register names are pre-declared: al-a4, v1-v6, sl fp,
and ip. (This is in addition to the default pre-declared register names RO-R15,
r0-r15, sp, SP, 1r, LR, pc and PC.)

e The ObjAsm built-in variable {CONFIG} is set to 26. This does not generate
particular ARM-specific code, but allows the Linker to warn of any mismatch
between files being linked, and also allows programs te use the standard
built-in variable {CONFIG} to determine what code to produce.

e Code areas are marked as using s1 for the stack limit register, following the
APCS,

When this menu option is chosen (i.e. it has a tick beside it), the APCS is not in
use, and so the above points no longer hold.

You can specify other APCS variants using the =APCS option in the Others writable
field at the bottom of the menu; see Specifying other command line oplions on page 18,
and Command line options not available from the desktop on page 23.

C strings, when enabled, allows the assembler to accept C style string escapes
such as ‘\n’. C strings is not enabled by default, as it results in *\' characters in
string constants being interpreted in a different way compared to previous Acorn
assemblers.

Upper case, when chosen, makes ObjAsm recognise instruction mnemonics only
if they are entirely in upper case. By default, Upper case is not chosen, and
ObjAsm recognises mnemonics that are entirely in upper or lower case (but not a
mixture of both).

This option is provided mainly to support old code that might have used lower
case versions of instruction mnemonics as macro names; it allows the macros to
still be recognised as such.

1

The SetUp menu

Jr— T WA

CPU sets the target ARM core. Currently this can take the values ARM6, ARM7 and
ARM7M, and defaults to ARM6. Some processor specific instructions will produce
warnings if assembled for the wrong ARM core:

Command line P
No APCS registers
C strings
Upper case
CU——
Define b
« NoCache
MaxCache i
Suppress warnings
Errors to file b
Listing »
NoTerse
Widith [
Length 3
Cross reference
' Work directory >
Others »

Predefining a variable

12

The next entry — Define — allows you to set an initial value for an assembler global
variable:

Command line P
No APCS registers
C sirings
Upper case
CcPU
Define [}
v NoCache
MaxCache s
Suppress wamings
Errors to file B
Listing P
NoTerse
Width ~
Length
Cross reference
v Work directory -
Others .

ObjAsm

S S S R

You must give a valid variable name, followed by a SETL, SETA or SETS directive,
followed by a value. The value may be a simple constant or a constant expression
(in ObjAsm syntax) of appropriate type — logical, arithmetic or string for SETL,
SETA and SETS respectively — provided that its value can be computed at the start
of assembly. The variable is set as if the directive occurs before the start of the
source; an implicit GBLL, GBLA or GBLS directive is also executed. In the case of
SETS, quotation marks are usually necessary around the value, since it is a string
expression.; these must be escaped by preceding each with a backslash (V).

Controlling cacheing

ObjAsm is a two pass assembler — it examines each source file twice. To avoid
reading each source file twice from disk the assembler can cache the source in
memory, reading it from disk for the first pass, then storing it in RAM for the
second. This makes very heavy use of memory, and so is unsuitable for smaller
machines.

The next two menu options control this cacheing:

NoCache disables cacheing when chosen, which is the default. When NoCache is
switched off, cacheing is enabled.

MaxCache allows you to specify the maximum amount of RAM to be used for
cacheing source files, provided that NoCache is off. The maximum cache is
specified in megabytes; the default is 8MB:

Comm
No APCS registers
C strings
Upper case

8
Errors to file >
Listing B
NoTerse
Width "
Length *

Cross reference
v Work directory P
Others b

13

The SetUp menu

T O e e

O R T S S

Handling warnings and errors

14

The next menu options control handling of warnings and errors:

Suppress warnings, when chosen, turns off the warning messages that ObjAsm
generates. It is off by default (i.e. warning messages are generated).

Errors to file allows you to specify a file to which error messages are output for
later inspection:

N LERE
Command line [
No APCS registers
C strings
Upper case
CPU L
Define

v NoCache

MaxCache L

Suppress warnings

Errors to file

Listing

NoTerse

Width P

Length

Cross reference

¢ Work directory

Others L

Yy

ObjAsm

T R e e

Listings
The next options control whether or not a listing is produced, and its format:

The Listing option enables assembler source code to be sent to a file:

Comman
No APCS registers
C strings

Upper case

CPU -
Define L
v NaCache
MaxCache L
Suppress warnings
Errors to file FE? = 2
SC8l:MHardy. $. Tmp.ObjAsmList

NoTerse
Width >
Length >

Cross reference
v Work directory P
Others *

This option turns on the Assembler listing, and during assembly the source code,
object code, memory addresses and reference line numbers will be sent to the
named file. Listing is off by default.

NoTerse modifies the listing that is output, which normally only includes the
conditionally assembled parts of your program. If you choose NoTerse,
conditionally non-assembled parts are listed as well. NoTerse is off by default

15

The SetUp menu

Width sets the width, in characters, of the listing that is output:

ne 8
No APCS registers
C strings
Upper case
CPU P
Define S
v NoCache
MaxCache P
Suppress warnings
Erors to file [
Listing
NoTerse Lo Wadh -
wian SRR
Length P
Cross reference
v Work directory P
Cthers I~

This should be between 1 and 254. The default width is 131; a width of 76 is
suitable for a Mode 12 RISC OS window,

Length sets the number of lines per page for printer output. At the end of each
page ObjAsm inserts a form feed character. The default length is 60:

Command fine P
No APCS registers
C strings
Upper case
CPU [
Define [
¢ MNoCache
MaxCache 8
Suppress wamings
Errors to file - 8
Listing [
NoTerse
Cross reference
v Work directory [
Others P

16

ObjAsm

R o

If you choose Cross reference, then after assembly ObjAsm outputs an
alphabetically sorted cross reference of all symbols encountered. Note that the
text output may be very large for a big program, and so this option may not
function on a machine with restricted memory. Cross reference is off by default,

Choosing your work directory

Work directory allows you to specify the work directory:

Command line

No APCS registers

C strings

Upper case

CPU P

Define P
v NoCache

MaxCache P

Suppress warnings

Errors to file b

Listing >

NoTerse

Others L

The GET and LNK directives both result in the assembler loading source files
specified with the directive. The work directory is the place where these source files
are to be found. An example is a source file:

adfs::HardDisc4.$.Source.s.foo
containing the line:

GET S.Mmacros
If the work directory is » then the file loaded is:

adfs::HardDisc4.$.Source.s.”.s.macros
(ie. adfs::HardDiscd4.$.5Source.s.macros)

The work directory must be given relative to the position of the source file
containing the GET or LNK, without a trailing dot,

The default work directory is *.

17

ObjAsm output

o

Specifying other command line options

The Others option on the SetUp menu leads to a writable icon in which you can
add an arbitrary extra section of text to the command line to be passed to ObjAsm:

il
Command fine P
No APCS registers
C strings
Upper case
crPU P
Define B
v NoCache
MaxCache P
Suppress wamings
Errors to file P
Listing p
NoTerse
Width P
Length I~
Cross reference
v Work directory
| -abs]

This facility is useful if you wish to use any feature which is not supported by any of
the other entries on the SetUp dialogue box and menu. This may be because the
feature is used very little, or because it may not be supported in the future,

For a full description of command line options, see ObjAsm command lines on
page 22.

ObjAsm output

ObjAsm outputs text messages as it proceeds. These include source listings and
symbol cross references (as described in the previous sections). By default any
such text is directed into a scrollable output window:

18

This window is read-only; you can scroll up and down to view progress, but you
cannot edit the text without first saving it. To indicate this, clicking Select on the
scrollable part of this window has no effect.

The contents of the window illustrated above are typical of those you see from a
successful assembly; the title line of the assembler with version number, followed
by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. This presents a reminder of the tool running (ObjAsm), the
status of the task (Running, Paused, Completed or Aborted), the time when the
task was started, and the number of lines of output that have been generated (ie
those that are displayed by the output window):

Clicking Adjust on the close icon of the summary box returns to the output
window.

Both the above ObjAsm output displays follow the standard pattern of those of all
the non-interactive Desktop tools. The common features of the non-interactive
Desktop tools are covered in more detail in the chapter General features on page 103
of the accompanying Desklop Tools guide. Both ObjAsm output displays and the
menus brought up by clicking Menu on them offer the standard features, which
allow you to abort, pause or continue execution (if the execution hasn't
completed), to save output text to a file, or to repeat execution.

ObjAsm error messages appear in the output viewer, with copies in the editor error
browser when throwback is working. The appendix Error messages on page 183 of this
manual contains a list of common ObjAsm error messages together with brief
explanations.

Assembly listings and cross references appearing in the output window are often
very large for assemblies of complex source files. The scrolling of the output
window is useful to view them To investigate them with the full facilities of the
source editor, you can save the output text straight into the editor by drageing the
output file icon to the SrcEdit main icon on the icon bar.

19

ObjAsm icon bar menu

i

ObjAsm icon bar menu

The ObjAsm main icon bar menu follows the standard pattern for non-interactive
Desktop tools:

Save options saves all the current ObjAsm options, including both those set from
the SetUp dialogue box and from the Options item on this menu. When ObjAsm is
restarted it is initialised with these options rather than the defaults.

The Options submenu allows you to set the following options:

e Display specifies the output display as either a text window (default) or as a
summary box.
e I[f Auto run is enabled, dragging a source file to the ObjAsm main icon

immediately starts an assembly with the current options rather than
displaying the SetUp box first. Auto run is off by default.

e If Auto save is enabled output image files are saved to suitable places
automatically without producing a save dialogue box for you to drag the file
from. Auto save is off by default.

Clicking on Help on the main ObjAsm menu displays a short text summary of the
various SetUp options, in a scrollable read-only window:

i e

-
.
o
-
-
-
-
.
-

=
TR

20

ObjAsm

Example ObjAsm session

The programming example AcornC_C++.Examples.AsmHello isa
non-desktop free standing command line program written in assembly language. It
outputs the text ‘Hello World'.

The assembly language source is held in the s subdirectory, in the file Hel1loW The
code demonstrates the ObjAsm directives needed for a free standing program,

To assemble Hel1loW, first run |Objasm and !Link by double clicking on them. Drag
the HelloW source text file to the ObjAsm icon. The SetUp dialogue box of
ObjAsm appears, Check that the default SetUp options are enabled:

o

MCMCM.EKQW.ASWHG%.SHGHM]

Click on Run to proceed, and save the object file produced in the o subdirectory.
Drag the object file to the Link icon, and Run Link to produce an AlF executable
image file, the link having the Hel1loW object file as its only input file. Save the
image file in AcornC_C++.Examples.AsmHello. !|RunImage. The command
line program is now ready for use.

To run the program under the desktop, double click on it. A window appears with
the text ‘Hello World":

. l:MHardy. § A Cis. ples. {Run
Hello MWorld
Press SPACE or click mouse to continue

As the window instructs you to do, press the space bar or click on your mouse. The
window disappears.

21

ObjAsm command lines

e

ObjAsm command lines

2e

ObjAsm, in common with the other non-interactive Desktop tools, can be driven
with a text command line without its RISC OS desktop interface appearing. This
enables ObjAsm to be driven by Make as specified in textual makefiles.

You can use ObjAsm outside the RISC OS desktop from its command line, in the
same way that it could be used in the previous Acorn Desktop Assembler product.
However, as all the useful ObjAsm features can be more conveniently used from
the RISC OS desktop there is little reason for you to do this. The desktop removes
the need for you to understand the command line syntax.

The ObjAsm RISC OS desktop interface drives the ObjAsm tool underneath by
issuing a command line constructed from your SetUp options. The Command line
SetUp menu option allows you to view the command line constructed in this way.

The Make tool allows you to construct makefiles with assembly operations
specified using the ObjAsm desktop interface (by following the Tool options item
of Make). You can therefore construct makefiles without understanding the
command line syntax of ObjAsm.

The command to invoke ObjAsm takes either of the forms:

ObjAsm «options» sourcefile objectfile
ObjAsm «options» -o objectfile sourcefile

The options are listed below, split into two sections: those for which there is a
direct equivalent in the SetUp dialogue box or menu, and those others for which
there is no equivalent. Upper case is used to show the allowable abbreviations.
Note that to understand what many of these options do it may be necessary to
refer to some of the documentation above.

Command line options available from the desktop

The table below shows the various command line options that correspond to the
options available from the SetUp dialogue box and menu, together with a
reference to the desktop equivalent, which you should see for full details of the
option:

Command line option Desktop equivalent Page
-1 dir«,dir» Include writable icon in dialogue box 9
~-ThrowBack Throwback option icon in dialogue box 9

-G Debug option icon in dialogue box 10
(See ~Apcs below) No APCS registers in menu 11
-Esc C strings in menu L
-UpperCase Upper case in menu 11

ObjAsm

e e ————
Command line option Desktop equivalent Page
-CPU ARMcore CPU in menu [2
-PreDefine directive Define in menu 12
-NOCache NoCache in menu 13
-MaxCache n MaxCache in menu 15
-NOWarn Suppress warnings in menu 14
-ERRors errorfile Errors to file in menu 14
-LIST listingfile Listing in menu 15
-NOTerse NoTerse in menu 15
-WIdth n Width in menu 16
-Length n Length in menu 16
-Xref Cross reference in menu 17
-Desktop dirname Work directory in menu 17

Command line options not available from the desktop

The table below shows those command line options for which there is no direct
equivalent in the SetUp dialogue box or menu. Should you need to use any of
these more esoteric options from the desktop, you can add them to the SetUp
menu's Others option (see Specifying other command line oplions on page 18).

Command line option Description

-Help Outputs a summary of the command line options.

-VIA filename Reads in extra command line arguments from the
given filename.

-LIttleend Assemble code suitable for a little-endian ARM,
by setting the built-in variable {ENDIAN} to
"little”

-BIgend Assemble code suitable for a big-endian ARM, by

setting the built-in variable {ENDIAN} to "big".

23

ObjAsm command lines

T

Command line option Description

-Apcs option«/qualifier»«/qualifier..»
Specifies whether the ARM Procedure Call
Standard is in use, and also specifies some
attributes of CODE AREAs, By default the register
names RO-R15, r0-r15, sp, SP, 1r, LR, pc, and
PC are pre-declared. If the APCS is in use the
following register names are also pre-declared:
al-a4,v1-v6, sl, fp and ip.
There are two APCS options: NONE and 3, The
SetUp menu's No APCS registers option
(page |1) —when chosen — declares the APCS in
use as NONE. The default behaviour is to use the
3/26bit/swstackcheck APCS variant used by
RISC OS
The qualifiers — which should only be used with
option 3 — are as follows:

/REENTrant Sets the reentrant attribute for any code AREAs,
and predeclares sb (static base) in place of v6,
/32bit Is the default setting and informs the Linker that

the code being generated is written for 32 bit
ARMs. The built-in variable {CONFIG} is also set
to 32,

/26bit Tells the Linker that the code is intended for 26 bit
ARMs. The built-in variable {CONFIG} is also set
to 26.

Note that these options do not of themselves
generate particular ARM-specific code, but allow
the Linker to warn of any mismatch between files
being linked, and also allow programs to use the
standard built-in variable {CONFIG} to
determine what code to produce.

/SWSTackcheck Marks CODE AREAs as using sl for the stack limit
register, following the APCS (the default setting).
/NOSWstackcheck Marks CODE AREAs as not using software

stack-limit checking, and predeclares an
additional v-register, v6 if reentrant, v7 if not.

-Depend dependfile Saves source file dependency lists, which are
suitable for use with ‘make’ utilities.

24

Command line option
-ABSolute

-FRom filename

-T0 filename

-Print

-Quit

Description

Accepts AAsm source code to provide some
backwards compatibility in this release. See the
appendix Support for AAsm source on page 211
Supported, for backward compatibility with
previous release.

Supported, for backward compatibility with
previous release.

Supported, for backward compatibility with
previous release.

Recognised but ignored, for backward
compatibility with previous release.

25

26

T O e R e T O T O O R R e e T

Part 2 — Assembly language details

27

28

The ARM CPU

Introduction

he ARM (Advanced Risc Machine) is a general purpose32 bit single chip

microprocessor. The architecture is based on Reduced Instruction Set
Computer (RISC) principles, and the instruction set and related decode
mechanism are greatly simplified compared with microprogrammed Complex
Instruction Set Computers. This simplification results in a high instruction
throughput and a good real-time interrupt response from a small and
cost-effective chip.

Bus widths

The ARM2 and ARM?3 have a 32 bit data bus and a 26 bit address bus. On later
versions of the ARM, both the data bus and the address bus are a full 32 bits wide,

Instruction set

All instructions fit into one 32 bit word, and they can all be made conditional.
The ARM instruction set comprises ten basic classes of instruction:

branches

data operations between registers

multiplies

single register data transfers

multiple register data transfers

single register data swaps

supervisor calls

coprocessor data operations

coprocessor/memory transfers

coprocessor/register transfers.
Two of these make use of the on-chip arithmetic logic unit (ALU), barrel shifter and
multiplier to perform high-speed operations on the data in the 32 bit registers,

Three instruction classes control the transfer of data between main memory and
the register bank, one optimised for flexibility of addressing, another for rapid

29

Introduction

S

context switching, and the third for swapping data. Two instruction classes control
the flow and privilege level of execution. The remaining three classes are dedicated
to the control of external coprocessors, which allow the functionality of the
instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set has proved to be a good target for compilers of many
different high-level languages. Where required for critical code segments,
assembly code programming is also straightforward, unlike some RISC processors
which depend on sophisticated compiler technology to manage complicated
instruction interdependencies.

The instruction set is detailed in the chapter CPU instruclion sel on page 53.

Pipelining

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously.

The ARM uses a 3-stage instruction pipeline. This allows it to execute one
instruction, and at the same time both to decode the following instruction, and to
fetch the one after that from memory.

Memory interface

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed critical control
signals are pipelined to allow system control functions to be implemented in
standard low-power logic, and these control signals facilitate the exploitation of
the fast local access modes offered by industry standard dynamic random access
memories (DRAMs).

Data types
The processor can access two types of data:
@ bytes (8 bits)
e words (32 bits)

where words must be aligned to four byte boundaries.

Instructions are fetched as words, and so must be aligned to four byte boundaries.
Data operations (eg ADD) are only performed on word guantities, Load and store
operations can transfer either bytes or words, and can put a full 26 or 32 bit
address (depending on the processor variant) — with bits 0 and | set as required -
on to the address bus,

30

The ARM CPU

e O o e = |

Block diagram of core

A bus
qQ ° BW R/W
| - i
ABE P .
ALE > Address Register § «— PH1
< g 3 <« PH2
T a 3
O Address g
@ | | ter | e
| g ncrementer g < Tl
- A <« FIQ
Register Bank ! -« RESET
(32 bit Registers)
< ABORT
I
= [
@ / Instruction
c ' Decoder | » OPC
and
Multiplier CLont_rol » TRANS
ogic
> -
& » Mbus
c
o |
Barrel i > MREQ
hift
Shi]er %; » SEQ
\ 32 bit ALU / -~ CPI
‘ 4 CPA
< CPB
- = S /|/
N =) =
; ; Instruction Pipeline
Write Data Register and Read Data Register

A
]

% 7
o
D bus D bus

Figure 3.1 ARM Core block diagram

31

26 bit architecture

26 bit architecture

This section describes the architecture of the ARM2 and ARM3 series, which only
supported a 26 bit address space. However, as we shall see in the section 32 bit
architecture on page 36, much of this is also relevant to later series of ARM when
used so as to provide backward-compatibility with the earlier 26 bit processors.

Processor modes

These older ARM series support four modes of operation:
e User mode: the normal program execution state

e Fast Interrupt mode (abbreviated to FIQ mode): designed to support a data
transfer or channel process

e Interrupt mode (abbreviated to IRQ mode): used for general purpose interrupt
handling

e Supervisor mode (abbreviated to SVC mode): a protected mode for the
operating system, also entered after a data or instruction prefetch abort, or
when an undefined instruction is executed.

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will
execute in User mode. The other modes, known as privileged modes, will be
entered to service interrupts or exceptions or to access protected resources.

Registers

32

The ARM has a number of 32 bit registers, 16 of which are visible to the
programmer at any time. This subset depends on the processor mode:

e Normally the ARM operates in User mode, with registers RO to R15 visible.

e Whenin the other privileged modes (see the section Pracessor modes on page 32)
special private registers are switched in. If code running in these modes needs
to use any of the shared registers, it should save their contents in memory
using one of the block data transfer instructions available for this purpose: see
Block data transfer (LDM, STM] on page 88.

The IRQ and SVC modes have two private registers mapped to R13 and R14
(RI13_irg and R14_irg, and R13_svc and R14_svc respectively).

The FIQ mode has more private registers so that FIQ code — which needs to
respond quickly — is less likely to need to use any of the shared registers, and so
will be spared the overhead of saving them to a stack. Its seven private registers are
mapped to R8-R14 (R8_fig-R14_fig).

e

The ARM CPU

The register bank organisation is shown in the figure 26 bit register organisation below-

User mode | SVC mode IRQ mode ' FIQ mode
RO
R
R2
R3
R4 N
RS
R6
R7
R8 R8_fiq
- Re | Rofq
R10 R10_fiq
R11 R11_fiq
R12 R12_fiq
R13 | R13.sw R13 irq R13_fiq
R14 R14.svc R14.rq R14_fiq
' R15 (PC/PSR)

Figure 3.2 26 bit register organisation

All registers are general purpose and may be used to hold data or address values,
except for R15 and R14;

® RI5 contains the Program Counter (PC) and the Processor Status Register
(PSR). See the section Register R15 below.

® RI14is used as the subroutine Link register, and receives a copy of the return
PC and PSR when a Branch and Link instruction is executed. See the section
Register R14 below.

R13 is also often used for a special purpose:

@ RI3is, by convention only, often used as a private stack pointer for a
processor mode.

The private copies of R13 and R14 allow each mode to have a private stack pointer
and link register, SVC and IRQ mode programs are expected to save the User state
on their respective stacks and then use the User registers, remembering to restore
the User state before returning.

33

26 bit architecture

R T

I e R

Register R15

R15 contains 24 bits of program counter (PC) and 8 bits of processor status register
(PSR).

The program counter (PC) is 24 bits wide and counts to &FFFFFF. However, two
low-order bits (both zeros| are appended to the PC value and a 26 bit value is put
on the address bus, thus quadrupling the total count to &3FFFFFC. The memory
capacity of the ARM processor is 64 Mbytes, or 16 Mwords. The PC is always a
multiple of four because of the two appended zeros, and so it follows that
instructions must be aligned to four byte boundaries,

Special bits in some instructions allow the PC and PSR to be treated together, or
separately, as required. The allocation of the bits within the register R15 is shown
in the figure The Program Counter (PC) and Process Status Register (PSR) below.

31 30 29 28 27 26 25 2 1 0
NIZ|C|V]|I|F Program counter (PC) M1 | MO
A A A L A A A

L Processor mode

00 == User mode

1 = FIQ mode

10 = IRQ mode

11 == Supervisor mode

- Program counter
{Word aligned)

FIQ disable
0 == Enable
1 = Disable

IRQ disable
0 = Enable
1 = Disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

Figure 3.3 The Program Counter (PC) and Process Status Register [PSR)

34

The ARM CPU

S S T O O O I O e T

The mnemonics for the four condition flags are derived as follows:

N Negative flag
Z Zero flag
C Carry lag
V Overflow flag

The condition flags may be altered in any mode. The |, F, and Mode flags can only
be changed directly in privileged modes; they are also modified when exceptions
occur or SWI instructions are executed.

Register R14

R14 is used as the subroutine Link register, and receives a copy of the return PC
and PSR when a Branch and Link instruction is executed (see page 63). It may be
treated as a general purpose register at all other times. Similarly, R14_svc, R14_irg
and R14_fig are used to hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions are executed within
supervisor or interrupt routines.

Changing operating modes

In the Assembler, the suffix P added to a CMN, CMP, TEQ or TST instruction causes
the instruction to change the PSR directly. Such instructions can be used to change
the ARM's mode, for example:

TEQP R15,#2 changes to IRQ mode
TEQP R15,#0 changes 1o user mode.

The action is to Exclusive OR the first operand with a supplied immediate field.
R15 is the first operand. Whenever R15 is presented to the processor as the first
operand, 24 bits are presented; the PSR bits are supplied as zero. The TEQ causes
the immediate field value to be written into the register, and the P causes the
PSR bits (now altered by the immediate field value) to be written back into R15.
Since two of the PSR bits are the mode control bits, the processor assumes its new
mode.

As the mode control bits cannot be set in User mode, this technique will not work
in User mode. There are, however, two ways to pass from User mode to other
modes:

@ by receiving an external interrupt

e by making use of the SWI instruction,

Note: For more details of instructions executed immediately following a mode
change see the sections Forcing transfer of the user bank on page 93 and Using R15 as the
destination on page 71.

35

32 bit architecture

32 bit architecture

36

The ARM architecture changed significantly with the introduction of the ARM6&
series. This section describes the differences in behaviour of more recent ARM
processors.

New features in ARM6

The most notable change made in the ARM6 series was to extend the program
counter to a full 32 bits. As a result:

The PSR had to be separated from the PC into its own register, the CPSR
(Currenl Program Status Register).

The PSR can no longer be saved with the PC when changing processor modes.
instead, each privileged mode now has an extra register — the SPSR (Saved
Program Status Regisler) —to hold the previous mode's PSR,

Instructions have been added to use these new status registers.

A further change was the addition of extra privileged processor modes, allowed by
the PSR now having a full 32 bits to use. These modes are used to handle
Undefined instruction and Abort exceptions. Consequently:

Undefined instructions, aborts, and supervisor code no longer have to share
the same mode. This has removed restrictions on Supervisor mode programs
which existed on earlier ARMs.

Processor configuration

The availability of these features in the ARM6 series (and other later compatible
chips) is set by one of several on-chip control registers. One of three pracessor
configurations can be selected.

26 bit program and data space. This configuration forces ARM to operate
with a 26 bit address space. In this configuration only the four 26 bit modes
are available (see Processor modes below); it is impossible to select a 32 bit
mode.

This configuration is set at reset on all current ARM6 and 7 series processors.

26 bit program space and 32 bit data space. This is the same as the 26 bil
program and data space configuration, except that address exceptions are
disabled to allow data transfer operations to access the full 32 bit address
space.

32 bit program and data space. This configuration extends the address
space to 32 bits, and introduces major changes to the programmer's madel. In
this configuration you can select any of the 26 bit and the 32 bit processor
modes (see Processor modes below),

The ARM CPU

S e

Processor modes

When configured for a 32 bit program and data space, the ARM6 and ARM7 series
support ten overlapping processor modes of operation:

User mode: the normal program execution state — or

User26 mode: a 26 bit version of the above

FIQ mode: designed to support a data transfer or channel process — or
FIQ26 mode: a 26 bit version of the above

[RO mode: used for general purpose interrupt handling — or

[RQ26 mode: a 26 bit version of the above

SVC mode: a protected mode for the operating system — or

SVC26 mode: a 26 bit version of the above

Abort mode (abbreviated to ABT mode): entered after a data or instruction
prefetch abort

Undefined mode (abbreviated to UND mode): entered when an undefined
instruction is executed.

The distinction between processor modes and configurations is important, and
will be rigidly adhered to in the rest of this manual.

The 26 bit processor modes

When in a 26 bit processor mode, the programmer’'s model reverts to that of earlier
26 bit ARM processors. The behaviour is the same as that of the ARM2aS macrocell
with the following alterations:

Address exceptions are only generated by ARM when it is conligured for 26 bit
program and data space,

In other configurations the OS may still simulate the behaviour of address
exception, using external logic such as a memory management unit to
generate an abort if the 64Mbyte range is exceeded, and converting that abort
into an 'address exception trap' for the application.

The new instructions to transfer data between general registers and the
program status registers remain operative. The new instructions can be used
by the operating system to return to a 32 bit mode after calling a binary
containing code written for a 26 bit ARM.

When in a 32 bit program and data space configuration, all exceptions
(including Undefined Instruction and Software Interrupt) return the processor
to a 32 bit mode, so the operating system must be modified to handle them.

If the processor attempts to write to a location between &0 and & F inclusive
(i.e. the exception vectors), hardware prevents the write operation and
generates a data abort. This allows the operating system to intercept all

37

32 bit architecture

o o s

changes to the exception vectors and redirect the vector to some veneer code.
The veneer code should place the processor in a 26 bit mode before calling the
26 bit exception handler.

In all other respects, when operating in a 26 bit mode the ARM behaves as like a
26 bit ARM. (See the section 26 bit archilecture on page 32.) The relevant bits of the
CPSR appear to be incorporated back into R15 to form the PC/PSR with the | and F
bits in bits 27 and 26. The instruction set behaves like that of the ARM2aS
macrocell, with the addition of the MRS and MSR instructions.

RISC OS processor configuration and modes

For details, see the section RISC OS processor configuration and modes on page 167.

Registers
The registers available in the ARM6 and ARMT series are:

38

User and SVC and IRQ and FIQ and
User26 SVC26 IRQ26 ABT mode | UND mode FlQ26
mode mode mode mode
RO
— — S
R2 -
R3
R4
RS
R6
R7
R8 o R8_fiq
R9 R9_fiq
R10 R10_fiq
R11 B R11_fiq
R12 R12_fiq
R13 R13_sve R13._irg R13_abt R13 und | R13fiq |
. R4 R14 svc R14 irg R14 abt | R14 und R14 fiq
o R15 (PC) -
CPSR
SPSRsvc SPSRirq | SPSRabt = SPSRund SPSR fig

Figure 3.4 32 bit register organisalion

The ARM CPU

S

These are similar to those available in the ARM2 and ARM3 series registers. The

key differences are:

® the PCis a full 32 bits wide
® the PSR is held in its own register, the CPSR (see the section The CPSR and

SPSR registers below)

each privileged mode has a private SPSR register in which to save the CPSR

there are two new privileged modes, each of which has private copies of R13

and R14.

The CPSR and SPSR registers

The allocation of the bits within the CPSR (and the SPSR registers to which it is
saved) is shown in the figure The Current Process Status Register (CPSR) below

31 30 29 28 27

Figure 3.5

87 6 5 4 3 2 1 0
I | F | |M4|M3|M2| M1 |MO
A A A A T A A
Processor mode
00000 = User26 mode
00001 = FIQ26 mode
00010 = IRQ26 mode
00011 = SVC26 mode
10000 = User mode
10001 = FIQ mode
10010 = IRQ mode
10011 = SVC mode
10111 = ABT mode
11011 = UND mode
—FIQ disable
0 = Enable
1 = Disable
IRQ disable

o = Enable
1 = Disable

Overflow

Carry/Not borrow/
Rotate extend

Zero

Negative/
Signed less than

The Current Process Stalus Register (CPSR)

39

Exceptions

e e e

Exceptions

This last section of the chapter is mainly of interest to operating systems
programmers — for example when constructing relocatable modules, If you are
writing applications, you can skip forward to the chapter ARM assembly language on
page 47.

This section describes the general behaviour of the ARM, rather than its behaviour
under RISC OS. For details specific to RISC OS you must also see the chapter
Exception handling on page 167.

Introduction

Exceptions arise whenever there is a need for the normal flow of program
execution to be broken, so that (for instance) the processor can be diverted to
handle an interrupt from a peripheral. The processor state just prier to handling
the exception must be preserved so that the original program can be resumed
when the exception routine has completed. Many exceptions may arise at the same
fime,

ARM handles exceptions by making use of the banked registers to save state. The
old PC and PSR are copied, in a 26 bit configuration to the appropriate R14, or in a
32 bit configuration to the appropriate R14 and SPSR. The PC and processor mode
bits are forced to a value which depends on the exception. Interrupt disable flags
are set where required to prevent otherwise unmanageable nestings of exceptions,
In the case of a re-entrant interrupt handler, R14 should be saved onto a stack in
main memory before re-enabling the interrupt. When multiple exceptions arise
simultaneously a fixed priority determines the order in which they are handled.

FIQ (Fast interrupt request)

40

The FIQ (Fast Interrupt reQuest| exception is externally generated by taking the FIQ
pin LOW. This input can accept asynchronous transitions, and is delayed by one
clock cycle for synchronisation before it can affect the processor execution flow. It
is designed to support a data transfer or channel process, and has sufficient private
registers to remove the need for register saving in such applications, so that the
overhead of context switching is minimised.

The FIQ exception may be disabled by setting the F flag in the PSR (but note that
this is not possible from User mode). If the F flag is clear ARM checks for a LOW
level on the output of the FIQ synchroniser at the end of each instruction.

The ARM CPU

A

e S R

When ARM is successfully FIQed it will:

1 SaveRI5in R14_fig, and (for 32 bit configuration ARMs| save the CPSR in
SPSR_fiq.

2 Force the mode bits to FIQ mode and set the F and | bits in the PSR,

3 Force the PC to fetch the next instruction from address &1C.

To return normally from FIQ use:

SUBS PC,R14 fiq,#4

This will resume execution of the interrupted code sequence, and restore the
original mode and interrupt enable state.

IRQ (Interrupt request)

The [RQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the IRQ pin. This input can accept asynchronous transitions, and is delayed by
one clock cycle for synchronisation before it can affect processor execution. It has
a lower priority than FIQ, and is masked out when a FIQ sequence is entered. [ts
effect may be masked out at any time by setting the | bit in the PC (but note that
this is not possible from user mode). If the [flag is clear ARM checks for a LOW
level on the output of the IRQ synchroniser at the end of each instruction.

When ARM is successfully IROed it will:

I Save RI5in Rl4_irq, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_irq.

2 Force the mode bits to IRQ mode and set the I bit in the PSR.
3 Force the PC to fetch the next instruction from address &18.
To return normally from IRQ use:

SUBS PC,R14_irq,#4

This will restore the original processor state and thereby re-enable [RQ.

Address exception trap

On a 32 bit configuration processor, address exceptions are never generated, and
you may therefore ignore this section for such processors.

On a 26 bit configuration processor, an address exception arises whenever a data
transfer is attempted with a calculated address above &3FFFFFF. The ARM address
bus is 26 bits wide, but an address calculation has a 32 bit result. [f this result has
alogic 'I'in any of the top 6 bits it is assumed that the address overflow is an error,
and the address exception trap is taken,

41

Exceptions

42

Abort

e : S 4 T O

Note that a branch cannot cause an address exception, and a block data transfer
instruction which starts in the legal area but increments into the illegal area will
not trap (it wraps round to address 0 instead). The check is performed only on the
address of the first word to be transferred.

When an address exception is seen ARM will;

1 If the data transfer was a store, force it to load. (This protects the memory from
spurious writing.)

2 Complete the instruction, but prevent internal state changes where possible.
The state changes are the same as if the instruction had aborted on the data
transfer,

3 Save RI5inRI14_svc.
4 Force the mode bits to SVC mode and set the | bit in the PSR,
5 Force the PC to fetch the next instruction from address &14.

Normally an address exception is caused by erroneous code, and it is
inappropriate to resume execution. If a return is required from this trap, use
SUBS PC,R14_svc,#4. This will return to the instruction after the one causing
the trap.

The Abort signal comes from an external Memory Management system, and
indicates that the current memory access cannot be completed. For instance, in a
virtual memory system the data corresponding to the current address may have
been moved out of memory onto a disc, and considerable processor activity may
be required to recover the data before the access can be performed successfully,
ARM checks for an Abort at the end of the first phase of each bus cycle. When
successfully Aborted ARM will respond in one of three ways,

Abort during instruction prefetch

If abort is signalled during an instruction prefetch (a Prefetch abort), the prefetched
instruction is marked as invalid; when it comes to execution, it is reinterpreted as
below. (If the instruction is not executed, for example as a result of a branch being
taken while it is in the pipeline, the abort will have no effect.)

Then ARM will;

1 Save R15in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_abt
and save the CPSR in SPSR_abt.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs} ABT mode
and set the | bit in the PSR,

3 Force the PC to fetch the next instruction from address &0C.

The ARM CPU

A T R O i = s

To continue after a Prefetch abort use SUBS PC,R14,#4 (where R14 isR14_svc
orR14 abt depending on the processor configuration). The ARM will then
re-execute the aborting instruction, so you should ensure that you have removed
the cause of the original abort.

Abort during data access

If the abort command occurs during a data access (a Data Abort), the action
depends on the instruction type.

e Single data transfer instructions (LDR and STR) are aborted as though the
instruction had not executed.

e Block data transfer instructions (LDM and STM) complete, and if writeback is
set, the base is updated. If the instruction would normally have overwritten the
base with data (ie LDM with the base in the transfer list), this overwriting is
prevented. All register overwriting is prevented after the Abort is indicated,
which means in particular that R15 (which is always last to be transferred) is
preserved in an aborted LDM instruction.

Then ARM will:

I SaveRI5in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_abt
and save the CPSR in SPSR_abt.

2 Force the mode bits to SYC mode or (for 32 bit configuration ARMs) ABT mode
and set the [bit in the PSR.

3 Force the PC to fetch the next instruction from address & 10.

To continue after a data abort, remove the cause of the abort, then reverse any
auto-indexing that the original instruction may have done, then return to the
original instruction with SUBS PC,R14,#8 (whereR14 isR14_svc orR14_abt
depending on the processor configuration).

Abort during an internal cycle

The ARM ignores aborts signalled during internal cycles.

Using aborts to implement virtual memory systems

The abort mechanism allows a ‘demand paged virtual memory system' to be
implemented when a suitable memory management unit (such as MEMC] is
available. The processor is allowed to generate arbitrary addresses, and when the
data at an address is unavailable the memory manager signals an abort. The
processor traps into system software which must work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The
application program needs no knowledge of the amount of memory available to it,
nor is its state in any way affected by the abort.

43

Exceptions

i

R

e

S

Software interrupt

The software interrupt instruction is used for getting into supervisor mode, usually
to request a particular supervisor function. ARM will;

I Save RI5in R14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc.

2 Force the mode bits to SYC mode and set the | bit in the PSR.

3 Force the PC to fetch the next instruction from address &8,

To return from a SWI, use MOVS PC,R14 svc. This returns to the instruction
following the SWI.

Undefined instruction trap

When ARM executes a coprocessor instruction or an undefined instruction, it
offers it to any coprocessors which may be present. If a coprocessor can perform
this instruction but is busy at that moment, ARM will wait until the coprocessor is
ready. If no coprocessor can handle the instruction ARM will take the undefined
instruction trap.

When the undefined instruction trap is taken ARM will:

1 Save R15in R14_svc, or (for 32 bit configuration ARMs) save R15 in R14_und
and save the CPSR in SPSR_und.

2 Force the mode bits to SVC mode or (for 32 bit configuration ARMs) UND
mode and set the | bit in the PSR,

3 Force the PC to fetch the next instruction from address &4.

The undefined instruction trap may be used for software emulation of a
coprocessor in a system which does not have the coprocessor hardware: or for
general purpose instruction set extension by software emulation (the floating
point instruction set is implemented in software this way).

To return from this trap (after performing a suitable emulation of the required
function], use MOVS PC,R14 (where R14 isR14_svcorR14 und depending on
the processor configuration). This will return to the instruction following the
undefined instruction.

e e e

Reset

The ARM CPU

ARM can be reset by pulling its RESET pin HIGH. If this happens, ARM will stop the
currently executing instruction and start executing no-ops. When RESET goes LOW
again, it will:

2
3

Save R15in R14_svc, and (for 32 bit configuration ARMs) save the CPSR in
SPSR_svc,

Force the mode bits to SVC mode and set the F and | bits in the PSR.
Force the PC to fetch the next instruction from address &0.

Vector summary

The first eight words of store normally contain branch instructions pointing to the
relevant routines. The FIQ routine may reside at &000001C onwards, and thereby
avoid the need for (and execution time of) a branch instruction.

Address Definition

&0000000 Reset

&0000004 Undefined instruction
&0000008 Software interrupt
&000000C Abort (prefetch)
&0000010 Abort (data)
£0000014 Address exception
0000018 IRC

&000001C FIQ

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system
determines the order in which they will be handled:

oM B W N

Reset (highest priority)
Address exception, Data abort
FIQ

[RQ

Prefetch abort

Undefined Instruction, Software interrupt (lowest priority)

45

Exceptions

fL

R

Note that not all exceptions can occur at once. Address exception and data abort
are mutually exclusive, since if an address is illegal the ARM will ignore the ABORT
input. Undefined instruction and software interrupt are also mutually exclusive
since they each correspond to particular (non-overlapping) decodings of the
current instruction.

If an address exception or data abort occurs at the same time as a FIQ, and FIQs
are enabled (ie the F flag in the PSR is clear), ARM will enter the address exception
or data abort handler and then immediately proceed to the FIQ vector. A normal
return from FIQ will cause the address exception or data abort handler to resume
execution, Placing address exception and data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection, but the time
for this exception entry should be added to worst case FIQ latency calculations.

Interrupt latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest
time the request can take to pass through the synchroniser, plus the time for the
longest instruction (typically load multiple registers) to complete, plus the time for
address exception or data abort entry, plus the time for FIQ entry. At the end of this
time ARM will be executing the instruction at ICH.

The maximum IRQ latency calculation is similar, but must allow for the fact that
FIQ has higher priority and could delay entry into the IRQ handling routine for an
atbitrary length of time.

The minimum latency for FIQ or IRQ consists of the shortest time the request can
take through the synchroniser, plus the time for FIQ or IRQ entry,

The above times can vary considerably between different versions of the ARM, and
obviously also depend on clock speeds. For more information you should see the
relevant datasheets,

46

s

4

£ Lo % S R N R A e e T R T s

ARM assembly language

S S o e O e e e O O T TR e e R

General

Input lines

AREAs

RM Assembly Language is the language which ObjAsm parses and compiles to
produce object code in ARM Object Format, Information on ObjAsm
command line options are detailed in ObjAsm command lines on page 22. This
chapter details ARM Assembly Language, but does not give examples of its use.

Instruction mnemonics and register names may be written in upper or lower case
(but not mixed case), Directives must be written in upper case.

The general form of assembler input lines is:
«label» «instruction» «;commentns

A space or tab should separate the label, where one is used, and the instruction. If
no label is used the line must begin with a space or tab. Any combination of these
three items will produce a valid line; empty lines are also accepted by the
assembler and can be used to improve the clarity of source code.

Assembler source lines are allowed to be up to 255 characters long. To make
source files easier to read, a long line of source can be split onto several lines by
placing a backslash character, ', at the end of a line. The backslash must not be
followed by any other characters (including spaces or tabs). The backslash + end of
line sequence is treated by ObjAsm as white space. Note that the backslash + end
of line sequence should not be used within quoted strings.

AREAs are the independent, named, indivisible chunks of code and data
manipulated by the Linker. The Linker places each AREA in a program image
according to the AREA placement rules (i.e. not necessarily adjacent to the AREAs
with which it was assembled or compiled).

Conventionally, an assembly, or the output of a compilation, consists of two
AREAs, one for the code (usually marked read-only), and one for the data which
may be written to. A reentrant object will generally have a third AREA marked

47

AREAs

T R e

ol

BASED sb (see below], which will contain relocatable address constants. This
allows the code area to be read-only, position-independent and reentrant, making
it easily ROM-able.

In ARM assembly language, each AREA begins with an AREA directive. If the AREA
directive is missing the assembler will generate an AREA with an unlikely name
([$$8$8$8|) and produce a diagnostic message to this effect. This will limit the
number of spurious errors caused by the missing directive, but will not lead to a
successful assembly.

The syntax of the AREA directive is;
AREA name« ,attrysw,attrnr...

You may choose any name for your AREAs, but certain choices are conventional.
For example, |C$$code | is used for code AREAs produced by the C compiler, or
for code AREAs otherwise associated with the C library.

Area attributes

AREA attributes are as follows:

ABS Absolute: rooted at a fixed address.
REL Relocatable: may be relocated by the Linker (the default).
PIC Position Independent Code: will execute where loaded without

modification.

CODE Contains machine instructions,

DATA Contains data, not instructions.

READONLY This area will not be written to.

COMDEF Common area definition.

COMMON Common area.

NOINIT Data AREA initialised to zero: contains only space reservation

directives, with no initialised values,
REENTRANT The code AREA is reentrant.

BASED Rn Static base data AREA containing tables of address constants
locating static data items. Ru is a register, conventionally R9. Any
label defined within this AREA becomes a register-relative
expression which can be used with LDR and STR instructions. For
full details see the appendix ARM procedure call standard on
page 249 of the Desktop Tools guide.

48

ORG and ABS

Symbols

ARM assembly language

ALIGN=expression
The ALIGN sub-directive forces the start of the area to be aligned
on a power-of-two byte-address boundary. By default AREAs are
aligned on a 4-byte word boundary, but the expression can have
any value between 2 and 12 inclusive.

ORG base-address

The ORG (origin) directive is used to set the base address and the ABS (absolute)
attribute of the containing AREA, or of the following AREA if there is no containing
AREA. In some circumstances this will create objects which cannot be linked. In
general it only makes sense to use ORG in programs consisting of one AREA, which
need to map fixed hardware addresses such as trap vector locations. Otherwise
ORG should be avoided.

Numbers, logical values, string values and addresses may be represented by
symbols. Symbols representing numbers or addresses, logical values and strings
are declared using the GBL and LCL directives, and values are assigned
immediately by SETA, SETL and SETS directives respectively (see Local and global
variables — GBL, LCL and SET on page 146). Addresses are assiegned by the
Assembler as assembly proceeds, some remaining in symbolic, relocatable form
until link time.

Symbols must start with a letter in either upper or lower case; the assembler is
case-sensitive and treats the two forms as distinct. Numeric characters and the
underscore character may be part of the symbol name. All characters are
significant.

Symbols should not use the same name as instruction mnemonics or directives.
While the assembler can distinguish between the uses of the term through their
relative positions in the input line, a programmer may not always be able to do so.

Symbol length is limited by the 255 character line length limit.

If there is a need to use a wider range of characters in symbols, for instance when
working with other compilers, use enclosing bars to delimit the symbol name; for
example, |C$$code|. The bars are not part of the symbol.

49

' Labels

Labels

Local labels

Labels are a special form of symbol, distinguished by their position at the start of
lines. The address represented by a label is not explicitly stated but is calculated
during assembly.

The local label, a subclass of label, begins with a number in the range 0-99. Local
labels work in conjunction with the ROUT directive and are most useful for solving
the problem of macro-generated labels. Unlike global labels, a local label may be
defined many times; the assembler uses the definition closest to the point of
reference. To begin a local label area use:

«label» ROUT

The label area will start with the next line of source, and will end with the next
ROUT directive or the end of the program.

Local labels are defined as:
number«routinenamen

although routinename need not be used; if omitted, it is assumed to match the
label of the last ROUT directive. It is an error to give a routine name when no label
has been attached to the preceding ROUT directive.

References to local labels

50

A reference to a local label has the following syntax;
Fuxn«yrneroutinenamen

% introduces the reference and may be used anywhere where an ordinary label
reference is valid.

x tells the assembler where to search for the label. use B for backward or F for
forward. If no direction is specified the assembler looks both forward and
backward. However searches will never go outside the local label area (i.e. beyond
the nearest ROUT directives).

y provides the following options: A to look at all macro levels, T to look only at this
macro level, or, if y is absent, to look at all macro from the current level to the top
level.

n is the number of the local label.

routinename is optional, but if present it will be checked against the enclosing
ROUT's label.

ARM assembly language

Comments
The first semi-colon on a line marks the beginning of a comment, except where the
semi-colon appears inside a string constant. A comment alone is a valid line. All
comments are ignored by the assembler,
Constants
Numbers
Numeric constants are accepted in three forms: decimal (e.g. 123), hexadecimal
(e.g. &7B), and n_xxx, where n is a base between 2 and 9, and xxx is a number in
that base.
Strings
Strings consist of opening and closing double quotes, enclosing characters and
spaces. If double quotes or dollar signs are used within a string as literal text
characters, they should be represented by a pair of the appropriate character, e g.
$S for $.
Boolean

The Boolean constants ‘true’ and ‘false’ should be written as {TRUE} and
{FALSE}.

The END directive
Every assembly language source must end with:
END

on a line by itself.

51

52

CPU instruction set

his chapter describes the CPU instructions available in ObjAsm. It includes
instruction formats, assembler syntax, and a synopsis of each instruction.

The condition field

All ARM instructions are conditionally executed, which means that they will only
be executed if the N, Z, C and V flags in the PSR are in the correct state at the end
of the preceding instruction. The condition is encoded in a four bit condition feld,
held in bits 28 - 31 of an instruction. By default ObjAsm encodes the 'always
execute' condition; other conditions can be requested by appending a
two-character condition mnemonic to ObjAsm's mnemonic for an instruction.

The figure below shows the condition codes, their mnemonics, and the
corresponding conditions under which the instruction is executed:

N 2827 o
Cond
A
—— Condition field
0000 = EQ Z set (equal)
0001 = NE Z clear (not equal)
0010 = GCS C set (unsigned higher or same)
0011 = CC C clear (unsigned lower)
0100 = MI N set (minus — i.e. negative)
0101 = PL N clear (plus — i.e. positive or zerg)
0110 = VS W set (overflow)
o1 = VC V clear (no overflow)
1000 = HI C set and Z clear {unsigned higher)
1001 = LS C clear or Z set (unsigned lower or same)
1010 = GE M set and V set, or N clear and V clear (greater or equal)
1011 = LT N set and V clear, or N clear and V set (less than)
1100 = GT Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL always execute (ignore flags)
1M1 reserved

Figure 5.1 The condition field

Note that ObjAsm implements HS (Higher or Same) and LO (LOwer than) as
synonymous with CS and CC respectively, giving it a total of 17 condition
mnemonics.

53

Instruction timings

S

i £

For example, suppose you had a CMP (compare) instruction followed by an
instruction with the EQ condition (so it is executed only if the Z flag is set):

e |[f the CMP instruction’s two operands were equal, it would set the Z flag, and
so your conditional instruction would be executed.

e |If the CMP instruction’s two operands were different, it would clear the Z flag,
and so your conditional instruction would not be executed.

Conditional instruction sequence

Branches which are taken cause breaks in the pipeline. For this reason they often
waste time, and can sometimes be replaced by a suitable conditional instruction
sequence.

As an example, the coding of IF A=4 THEN B:=A ELSE C:=D+E might be
conventionally achieved using five ARM instructions;

CMP R5, #4 :test "A=4"
BNE LABEL ;if not equal goto LABEL
MOV R6,R5 ;do "B:=A"
B LAB2 ;jump around the ELSE clause
LABEL ADD RO,R1,R2;do "C:=D+E"
LAB2 ;finish

whereas, using the condition testing instructions, the same effect may be achieved
using three instructions:

CMP 5, #4 ;jtest "A=4"
MOVEQ R6,R5 ;1f so do "B:=A"
ADDNE RO,R1,R2;else do "C:=D+E".

If the condition tested is true, the instruction is performed. If it is false, the
instruction is skipped and the PC is advanced to the next memory word, which
takes little processor time. The first of the examples above takes about twice as
long as the second.

After the instruction is obeyed, the arithmetic logic unit (ALU) will output
appropriate signals on the flag lines. On certain instructions, the flags set the
condition code bits in the PSR; for other instructions, the flags in the PSR are only
altered if the programmer permits them to be updated.

Instruction timings

Instruction timings can vary between versions of the ARM processor, and so we do
not detail them here. For code that is timing dependent, we advise that you
consult the datasheets for all ARM versions on which your code may run.

54

CPU instruction set

S R # : i = T R R

The barrel shifter

The arithmetic logic unit has a 32-bit barrel shifter capable of various shift and
rotate operations. Data involved in the data processing group of instructions
(detailed in the section Dala processing on page 66) may pass through the barrel
shifter, either as a direct consequence of the programmer's actions, or as a result of
the internal computations of ObjAsm. The barrel shifter also affects the index for
the single data transfer instructions (detailed in the section Single data transfer (LDR,
STR) on page 83}.

The barrel shifter has a carry in, which takes its input from the C flag of the PSR;
and a carry out, which may be latched back into the C bit of the PSR for logical data
operations (see The S bit on page 69).

The shift mechanism can produce the following types of operand.:

Unshifted register

Syntax: register
For example: RO

Register shifted by a constant amount

A register shifted by a constant amount, in the range 0-31, 1-31 or 1-32 (depending
on shift type).

Syntax: register, shift-type #amount
For example: RO,LSR #1
Value resulting from rotating register and carry bit one bit right

A value which is the result of rotating a register and the carry bit one bit right.
Because the carry is included in the shift, 33 bits (rather than 32 bits) are affected.
The shift type is known as rotate right extended.

Syntax: register,RRX
Forexample: RO,RRX
Register shifted by n bits

A register shifted by n bits, where n is the least significant byte of a register. This
form is not valid as an index in a single register transfer.

Syntax: register,shift-type register
For example: R1,LSL R2

55

The barrel shifter

R

8-bit constant rotated right by 2n bits

A constant constructed by rotating an 8-bit constant right by 2n bits, where n is a
4-bit constant. The shift type is always rotate right. This form is not valid as an
index in a single register transfer

Syntax: #expression
For example: #&3FC

Note that the rotation is invisible to the programmer, who should merely supply an
immediate value for the data processing instruction to use.

ObjAsm will evaluate the expression and reject any number which cannot be

expressed as a rotation by an even amount of a number in the range 0-255. If
possible, ObjAsm always constructs it as an unrotated value, even if there are
other possibilities.

Examples of valid immediate constants are:

#1

#&FF

#&3FC This is &FF rotated right by 30
#&80000000 This is 2 rotated right by 2
#EFCO00003 This is &FF rotated right by 6.

Examples of invalid constants are:

#&101 cannot be obtained by rotating an 8-bit value
#&1FE an 8-bit value rotated by an odd amount — but not an 8-bit value
rotated by an even amount.

8-bit constant rotated right by 2n bits and specified explicitly

A constant constructed as in the point above, but specified explicitly. This form is
not valid as an index in a single register transfer.

Syntax. #constant, rotate amount
For example: #4,2

The shift amount should be an even number in the range 0-30. This can be
important for setting the carry flag on an operation which would otherwise not
update it.

For example:

MOVS RO, #4 ,2 produces the same result as
MOVS RO, #1

but because the first instruction does a rotate right of two bits the carry flag is
cleared, whereas it is not altered by the second instruction.

56

CPU instruction set

I

Shift types
Various instructions use the barrel shifter to shift register operands. The effects of
such shifts are detailed in this section, rather than being repeated for each
instruction.
Mnemonics

There are six assembler mnemonics for shift types, used to control the barrel
shifter. These are:

LSL Logical Shift Left

ASL Arithmetic Shift Left
LSR Logical Shift Right

ASR Arithmetic Shift Right
ROR Rotate Right

RRX Rotate Right with Extend

The mnemonic ASL (arithmetic shift left) may be freely interchanged with LSL
(logical shift left).
Specification of the shift amount

The shift amount may either be specified in the instruction, or in a register
specified by the instruction.

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field
which may take any value from 0 to 31.

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount.

If this byte is zero, the unchanged contents of Rm will be used as the second
operand, and the old value of the PSR C flag will be passed on as the shifter carry
output.

If the byte has a value between | and 31, the shifted result will exactly match that
of an instruction specified shift with the same value and shift operation,

If the value in the byte is 32 or more, the result will be a logical extension of the
shifting process. This is detailed for each mnemonic described below.

57

Shift types

e

Logical shift left, or arithmetic shift left

Rm,LSL #n or
Rm,ASL #n
Rm,LSL Rs or
Rm,ASL Rs

Shift contents of Rm left by n bits, where nis 0 to 31,

Shift contents of Rm left by the least significant byte of Rs,

A logical shift left (LSL) takes the contents of Rm and moves each bit by the
specified amount to a more significant position. The least significant bits of the
result are filled with zeroes. The high bits of Rm which do not map into the result
are discarded — except that the least significant discarded bit becomes the barrel
shifter's carry out.

For example, the effect of LSL #5 is:

31 28 27 26 Contents of Rm 0

|
‘Carry out -

31 Value of operand 2 54 0

Figure 5.2 A logical or arithmetic shift left by 5

Special cases

e LSL #0 or ASL #0, and LSL Rs or ASL Rs where Rs is 0:

The barrel shifter's result is the unchanged contents of Rm, and its carry out is
the old value of the PSR C flag.

® LSL Rsor ASL Rs where Rs is 32:
The result is zero, and the carry out is bit 0 of Rm.

@ LSL Rsor ASL Rs where Rs is greater than 32
Both the result and the carry out are zero.

58

CPU instruction set

S R

Logical shift right

Rm,LSR #n Shift contents of Rm right by r bits, where n is | to 32.
Rm,LSR Rs Shift contents of Rm right by the least significant byte of Rs,

A logical shift right (LSR) is similar to a logical shift left, but the contents of Rm are
moved to less significant positions in the result. LSR #5 has this effect:

31 Contents of Rm 543 0

a
_Carry out’

31 27 26 alue of operand 2 0

Figure 5.3 A logical shift right by 5

Logical shift right zero is redundant as it is the same as logical shift left zero. The

form of the shift field which might be expected to correspond to LSR #0 is therefore
used to encode LSR #32. ObjAsm assembles LSR #0 (and ASR #0 and ROR #0) as

LSL #0, and allows you to specify LSR #32.

Special cases

® LSR#0:

This is assembled as LSL #0 (see page 58), which has the same effect as
LSR #0.

® LSRRswhere Rsis 0:

The barrel shifter's result is the unchanged contents of Rm, and its carry out is
the old value of the PSR C flag.

® LSR#32 or LSR Rs where Rs is 32:

The result is zero, and the carry out is bit 31 of Rm. [LSR #32 is encoded in the
format you would expect to correspond to LSR #0.)

® LSR Rswhere Rs is greater than 32
Both the result and the carry out are zero.

59

Shift types

Arithmetic shift right
Rm,ASR #n Shift contents of Rm right by n bits, where nis | to 32,
Rm,ASR Rs Shift contents of Rm right by the least significant byte of Rs.

An arithmetic shift right {ASR) is similar to a logical shift right, except that the high
bits are filled with bit 31 of Rm instead of zeroes, This preserves the sign in 2's
complement notation. For example, ASR #5

31 30 Contents of Rm 543 0

. Carry out |

31 27 26 25 Value of operand 2 0

Figure 5.4 An arithmetic shift right by 5

Arithmetic shift right zero is redundant as it is the same as logical shift left zero.
The form of the shift field which might be expected to correspond to ASR #0 is
therefore used to encode ASR #32. ObjAsm assembles ASR #0 (and LSR #0 and
ROR #0) as LSL #0, and allows you to specify ASR #32.

Special cases

® ASR#0:

This is assembled as LSL #0 (see page 58), which has the same effect as
ASR #0.

® ASR Rswhere Rs is 0

The barrel shifter's result is the unchanged contents of Rm, and its carry out is
the old value of the PSR C flag.

® ASR#32 or ASR Rs where Rs is 32 or more;

Each bit of the result is equal to bit 31 of Rm; the result is therefore all ones or
all zeroes. The carry out is also bit 31 of Rm. (ASR #32 is encoded in the format
you would expect to correspond to ASR #0.)

60

CPU instruction set

Rotate right
Rm,ROR #n Rotate contents of Rm right by n bits, where nis | to 31.
Rm,ROR Rs Rotate contents of Rm right by the least significant byte of Rs.

Rotate right (ROR) operations reuse the bits which ‘overshoot' in a logical shift
right operation by reintroducing them at the high end of the result, in place of the
zeroes used to fill the high end in logical right operations. For example, ROR #5:

31 Contents of Rm 5413 0 |

. S _Carry o.ut._
Lt '

31 30 27 26 Value of operand 2 0

Figure 5.5 A rotate right by 5

Rotate right zero is redundant as it is the same as logical shift left zero. The form of
the shift field which might be expected to correspond to ROR #0 is therefore used
to encode rotate right extended (see the next section). ObjAsm assembles ROR #0
(and LSR #0 and ASR #0) as LSL #0.

Special cases

e ROR #0:

This is assembled as LSL #0 (see page 58), which has the same effect as
ROR #0.

® ROR Rswhere Rsis 0:

The barrel shifter’s result is the unchanged contents of Rm, and its carry out is
the old value of the PSR C flag.

® ROR Rs where Rs is 32
The result is equal to Rm, and the carry out is bit 31 of Rm.
® ROR Rs where Rs is greater than 32

The result and carry out are the same as for ROR ((Rs - 1) MOD 32 + [);
therefore repeatedly subtract 32 from Rs until its value is in the range | to 32,
and then see above,

61

Coprocessor instructions

Rotate right with extend
Rm, RRX Rotate contents of Rm and the carry flag right by 1 bit only.

The form of the shift field which might be expected to give ROR #0 is used to
encode a special function of the barrel shifter, rotate right extended (RRX). This is
a rotate right by one bit position of the 33 bit quantity formed by appending the
PSR C flag to the most significant end of the contents of Rm:

31 Contents of Rm 10

Carry
in

3130 Value of operand 2 0

Figure 5.6 A rotate right with extend

Coprocessor instructions

The ARM can work with up to 16 external coprocessors, which (if present) will
execute the instructions listed below. If the requested coprocessor is absent, these
instructions will be regarded as undefined. The undefined instruction trap can then
take appropriate action (for example emulating the requested instruction in
software or telling the user that the program won't run in a machine without the
COProcessor.)

The floating point coprocessor uses coprocessor numbers | and 2. Il it's absent,
the floating point emulator traps the resulting undefined instructions and
emulates them. The coprocessor 15 instructions are used by ARM as instructions
to control its own operation (such as cache control, and 26/32 bit configuration).

ObjAsm provides support for coprocessors at two levels. Firstly, it provides a set of
generic coprocessor instructions, detailed below. Secondly, it recognises a
standard set of floating point instructions and translates them into the appropriate
coprocessor instructions; see the chapter Floating point instructions on page 117 for
details.

All the generic coprocessor operations include a coprocessor number symbol and
one or more coprocessor register symbols. These should be defined using the CP
and CN directives respectively. (See the chapter Directives on page 139.)

All coprocessor instructions are conditional. Whether they are executed depends
on the ARM's condition flags, not on any coprocessor status register.

62

CPU instruction set

S

Lo

Branch, Branch with Link (B, BL)

Instructions for branching to an instruction other than the next one

Instruction format

N 28 27 252423 0
Cond |10 1|L Offset
A 'y
Link bit

1] = Branch
1 == Branch with link

Condition field
(see page 53)

Assembler syntax

B«L»«condr expression

where;

«Lin requests the Branch with Link form of the instruction (see The link
bit below). If absent, R14 will not be affected by the instruction.

«cond» is a two-character condition mnemonic; see the section The

condition field on page 53.

expression Isa program-relative expression describing the branch
destination, from which ObjAsm calculates the offset.

Synopsis

These instructions branch to an instruction other than the next one, by altering the
value of the program counter (R15). The Branch with Link form of the instruction
also stores a return address in the link register (R14), so that program flow can
branch to a subroutine, and then return to the instruction immediately following
the Branch with Link instruction; for more details see The link bit below.

All branches take a signed 2's complement 24 bit word offset. This is shifted left
two bits, and added to the program counter, with any overflow being ignored,
giving an offset of £32Mbytes. The branch can therefore reach any word aligned
address within a 26 bit address space, since the calculation ‘wraps round’ between
the top and bottom of memory.

When using this instruction with ObjAsm you should provide a label, from which
ObjAsm will calculate the 24 bit offset.

63

Branch, Branch with Link (B, BL)

The encoded offset must take account of the effects of pipelining and prefetching
within the CPU, which causes the PC to be two words ahead of the current
instruction, ObjAsm automatically handles this for you. For example, the
calculated jump offset in the following piece of code is 000000, even though the
jump is to a label two PC locations ahead.

Code generated Label Mnemonic Destination
EAQ00O00CD Ll BEQ L2
1:9.9.9.9.6.9.8.4 XXX

XXXXKXKXX L2 XXX

The instruction is only executed if the condition specified in the condition field is
true (see the section The condition field on page 53).

The link bit

Branch with Link works in the same way as Branch, but it also writes the old PC and
PSR into the link register (R14) of the current bank. The PC value written is first
adjusted to allow for the prefetch, and contains the address of the instruction
following the branch and link instruction.

This form of the instruction is often used for branching to subroutines. At the end
of the subroutine the program flow can return to the instruction immediately
following the Branch with Link instruction by writing the link register (R14) value
back into the program counter (R15). To do so, the subroutine should end with:

MOV PC,R14
if the link register has not been saved on a stack, or:
LDMxx Rn, {PC}

if the link register has been saved on a stack addressed by Rn. (xx is the stack type;
see the section Block dala transfer (LDM, STM) on page 88.)

These methods of returning do not restore the original PSR. If the PSR does need
to be restored then

MOV PC,R14 can be replaced by MOVS ©PC,R14 or
LDMxx Rn,{PC} by LDMxx Rn,{PC}"

However, care should be taken when using these methods in modes other than
user mode, as they will also restore the mode and the interrupt bits. In particular,
restoring the interrupt bits may interfere unintentionally with the interrupt system.

64

32 bit operation

Calculating the offset

CPU instruction set

e o e e e

In 32 bit operation, the offset is sign extended to 32 bits before it is added to the
program counter,

Branches beyond £32Mbytes must use an offset or an absolute destination which
has previously been loaded into a register. In this case you should manually save
the PC in R14 if you require a Branch with Link type operation.

The link bit

Branch with Link does not save the CPSR with the PC_ If you need to preserve the
CPSR over a subroutine, it is your responsibility to explicitly save and restore it,
either on entry to and exit from (respectively) the subroutine, or in the calling part

of the program.

Examples

here BAL
CMP
BEQ
BL

ADDS

BLCC

here
there
R1,#0
fred

sub + ROM

R1,#1

sub

; Assembles to EAFFFFFE

{note effect of PC offset)

; Always condition used as default

Compare register 1 with zero
Branch to fred if register 1 was zero,
otherwise continue to next instruction

Unconditionally call subroutine at
computed address

; Add 1 to register 1, setting PSR flags on

the result
Call subroutine if the C flag is clear,

; which will be the case unless Rl contained

FFFFFFFFH
Otherwise continue to next instruction

65

Data processing

H : o e o

Data processing

Instructions for performing arithmetic or logical operation on one or two operands

Instruction format

3 2827262524 212019 1615 12 11 0
Cond |0 0|1|Opcode|S| Rn Rd Operand2
A A h A A A A

Destination register
1st operand register
Set condition codes

1] = do not alter condition codes
1 == sel condition codes

Operation code

0000 = AND Rd:=RnAND Op2

0001 = EOR Rd:=RnEOROp2

0010 = SUB Rd := Rn— Op2

001t = RSB Rd:=0p2-ARn

0100 = ADD Rd := Rn + Op2

0101 = ADC Rd:=Rn+0p2+Cflag

0110 = SBC Rd:=Rn—0p2—-NOT(C flag)

0111 = RSC Rd:=0p2-RAn- NOT(C flag)

1000 = TST set condition codes on Rn AND Op2
1001 = TEQ setcondition codes on Rn EOR Op2
1010 = CMP set condition codes on Rn — Op2
1011 = CMN set condition codes on Rrr + Op2
1100 = ORR Rd := Rn OR Op2

1101 = MOV Rd:=0p2

1110 = BIC Rd = Rn AND NOT Op2

11 = MWVN Rd := NOT Op2

Immediate Operand
0 = Operand2 is a register

11 43 4]

Shift Rm
A i

Shift applied t6 Rm 2nd operand register

1 == Operand2 is an immediate value
1 87 0
Rotate Imm
A i

Shift applied to Imm Unsigned 8 bit
immediate value

Condition field
(see page 53)

66

CPU instruction set

e s e e

Assembler syntax

The data processing instructions use three different types of syntax, depending on
whether the opcode being used takes one or two operands, and whether or not it
writes the result into a destination register:

MOV and MVN - single operand
opcode«cond» «S» Rd,op2

CMN, CMP, TEQ and TST - no result written

opcode«cond» «P» Rn,op2

ADC, ADD, AND, BIC, OR, ORR, RSB, RSC, SBC, SUB - two operands

opcode«cond»«S» Rd,Rn,op2

Parameters

opcode is a mnemonic for the data processing operation to be performed:
see Opcodes below

«cond» is a two-character condition mnemonic; see the section The
condition field on page 53.

«S» means to set the PSR's condition codes from the operation.
ObjAsm forces this for CMN, CMP, TEQ and TST, provided the P
flag is not specified. See Opcodes below for a summary of the flags
affected by each opcode, and The S bil on page 69 for more detail.

«Pu means to take the result of a CMN, CMP, TEQ or TST operation,

and move it to the bits of R15 that hold the PSR — even though the
instruction has no destination register. Bits corresponding to the
PC are masked out, as are (in User mode) the |, F and mode bits,

Rd, Rn & Rm are expressions evaluating to a valid ARM register number.

op2 may be any of the operands that the barrel shifter can produce.
The syntax is Rm« , shift» or #expression
If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

shift isshiftname Rs orshiftname #expression, or
RRX (rotate right one bit with extend). shiftnames are: ASL,
LSL, LSR, ASR, and ROR. (ASL is a synonym for LSL, and the two
assemble to the same code.) See Shift types on page 57.

67

Data processing

68

ki

Opcodes

R e e e

The opcodes supported are:

Assembler
Mnemonic

ADC
ADD
AND
BIC
CMN
CMP
EOR
MOV
MYN
ORR
RSB
RSC

SBC
SUB
TEQ
TST

Synopsis

Meaning

Add with Carry
Add

And

Bit Clear
Compare Negated
Compare
Exclusive Or
Move

Move Not

Logical Or
Reverse Subtract
Reverse Subtract
with Carry
Subtract with Carry
Subtract

Test Equivalence
TeST and mask

Operation

Rd:=Rn + op2 + C flag
Re:=Rn + op2

Rd:=Rn AND op2
Rd:=Rn AND (NOT{op2))
Rn + op2

Rn —op2

Rd:=Rn EOR op2
Rd:=op2

Rd:=NOT ap2

Rd:=Rn OR op2
Rd:=op2 — Rn

Rd:=0p2 — Rn — NOTI(C flag)

Rd:=Rn —op2 — NOT(C tlag)
Rd:=Rn —op2
Rn EOR op2
Rn AND op2

S e R

Flags
affected

NZCV
NZCV
N.Z,C
N.ZC
NZ.CV
NZCV
N.ZC
N.Z.C
N,Z,C
N.Z.C
NZCV
NZCV

NZCV
N,Z CV
N,ZC
N.Z,C

These instructions produce a result by performing a specified arithmetic or logical

operation on one or two operands.

The operation is performed between a source register Rin and an operand op2 —
except for MOV and MVN, where only the operand is needed (and for which the
assembler sets Ru to R0O). The source register can be any one of the 16 registers.
The operand can be any operand that the barrel shifter can produce: i e, a shifted
register Rm, or a rotated 8 bit immediate value lmm, according to the value of the |
bit in the instruction. (See The barrel shifter on page 55 and Shifl lypes on page 57.)
Note that any shifting is done before the operation is performed.

The logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST) pertorm the
logical action on all corresponding bits of the operand or operands to produce the
result, The arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB]
treat each operand as a 32 bit integer (either unsigned or 2's complement signed,
the two are equivalent). Some add the bit held in the ALU’s carry flag into the

operation.

CPU insiruction set

S R R S e S S S S O N S R R R e e

The result of the operation is placed in the destination register Rd — except for
CMN, CMP, TEQ and TST, which are used only to perform tests and to set the
condition codes on the result {and for which the assembler sets Rd to RO). The
destination register may be any one of the 16 registers.

The condition codes in the PSR may be preserved or updated as a result of this
instruction, according to the value of the 5 bit; see The S bit below.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

The S bit

The instruction contains a one bit field called the S bit, standing for 'set condition
codes’. The result of the operation in the ALU affects its N and Z flags, and may
also affect its C and V flags. However, the ALU doesn't copy its flags to the relevant
parts of the PSR unless the S bit is set. ObjAsm always sets the S bit for the four
instructions CMN, CMP, TEQ and TST, since they would be meaningless unless
their results were copied to the PSR, In the case of the remaining 12 instructions,
you may request that the S bit be set by appending the letter S to the instruction
mnemonic.

The way the PSR flags are altered differs for logical and arithmetic operations:

Logical operations (AND, BIC, EOR, MOV, MVN, ORR, TEQ, TST)
@ The Vflagin the PSR will be unaffected.

e The C flag will be set to the last bit shifted out by the barrel shifter, or is
unchanged if no shifting took place

The Z flag will be set if and only if the result is all zeroes.

The N flag will be set to the logical value of bit 31 of the result.

Arithmetic operations (ADC, ADD, CMP, CMN, RSB, RSC, SBC, SUB)

® The Vflagin the PSR will be set if signed overflow occurs (i.e. if you regard the
operands as signed 32 bit integers, the signed result does not fit in a 32 bit
integer); this may be ignored if the operands were considered unsigned, but
warns of a possible error if the operands were 2's complement signed (the
destination register is sel to the bottom 32 bits of the correct unsigned result),

® The C flag will be set to the carry out of bit 31 of the ALU, which for addition
indicates that 32 bit overflow occurred, and for subtraction indicates that 32
bit underflow did not occur,

The Z flag will be set if and only if the result was zero.

The N flag will be set to the value of bit 31 of the result, indicating a negative
result if the operands are considered to be 2's complement signed

69

Data processing

£

70

The P flag

Shifts

The P flag invokes a special form of the CMN, CMP, TEQ and TST operations, used
to update the PSR. The operation is carried out, and then the PSR is overwritten by
the corresponding bits in the ALU result: so bit 31 of the result goes to the N flag,
bit 30 to the Z flag, bit 29 to the C flag, and bit 28 to the V flag. In user mode the
other flags (I, F, M1, M0} are protected from direct change, but in non-user modes
these will also be affected, accepting copies of bits 27, 26, | and 0 of the result
respectively.

This is typically used to change modes. For example:
TEQP R15, #0 ; Change to user mode.

Note the treatment of R15 as the first operand, described in Using R15 as an operand
on page 71,

This form is encoded by setting the S bit, and setting the destination register to
R15,

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates
the type of shift to be performed (logical left or right, arithmetic right or rotate
right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register:

11 76 5 4 1 B76 5 4
0 0 1
A T A A

Shift type Shift type
00 = logical left 00 = logical left
01 = logical right 01 = logical right
10 = arithmetic right 10 = arithmetic right
11 = rotate right 11 = rotate right

Shift amount ' Shift register
5 bit unsigned integer Shift amount specified in

bottom byte of Rs

Figure 5.7 Shifts
Shifts are detailed in the section Shift types on page 57.

Note that the zero in bit 7 of an instruction with a register controlled shift is
compulsory; a one in this bit will cause the instruction to be a multiply or an
undefined instruction.

CPU instruction set

T S e e e e e T

Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a
shift operation on the 8 bit immediate value. The immediate value is zero
extended to 32 bits, and then subject to a rotate right by twice the value in the
rotate field, This enables many common constants to be generated, for example all
powers of 2. Another example is that the 8 bit constant may be aligned with the
PSR flags (bits 0, 1, and 26 to 31). All the flags can thereby be initialised in one
TEQP instruction.

Immediate operand rotates are detailed in the section The barrel shifter on page 55.

Using R15 as the destination or operand

Note that the CPU takes certain actions whenever the destination or any operand
is R15. These are as follows:

Using R15 as the destination

If R15 is the destination register, and the S bit is not set, the PC is overwritten, but
not the PSR.

If the S bit is set, then the PC is overwritten, and also all bits of the PSR that are
unprotected in the current mode; thus in User mode the N, Z C and V flags are
overwritten, whereas in other modes the entire PSR is overwritten.

Using R15 as an operand

R15 will always contain the value of the PC, which will be the address of the
instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift amount is
specified in the instruction, the PC will be 8 bytes ahead. If a register is used to
specify the shift amount, the PC will be 8 bytes ahead when used as Rs, and 12
bytes ahead when used as Ru or Rm,

R15 may or may not contain the values of the PSR flags as they were at the

completion of the previous instruction, depending on which operand position it

occupies,

e [fRI15isthe first operand in a two operand instruction, it is presented to the
arithmetic logic unit (ALU) with the PSR bits set to zero,

@ [f the second or only operand is R15 (possibly shifted), it is presented to the
barrel shifter or ALU with the PSR bits unchanged.

e [f R15 is the shift register, it is presented to the barrel shifter with the PSR bits
set to zero,

71

Data processing

e e e e e S

32 bit operation

TEQP, TSTP, CMPP and CMNP

These opcodes should not be used in 32 bit modes. You should instead use the
new PSR transfer functions. When used in a privileged mode, TEQP moves the
SPSR for the current mode to the CPSR.

Using R15 as the shift register

You must not use R15 as the shift register,

Using R15 as the destination

If R15 is the destination register, and the S bit is not set, the PC is overwritten, but
not the CPSR. This is what you would expect as an extension of the 26 bit
behaviour

If the destination register is R15 and the S bit is set, then as well as writing the
result to the PC, the SPSR for the current mode is moved to the CPSR. This is again
what you would expect as an extension of the 26 bit behaviour.

Examples

; Simple use of a one operand instruction:
MV R2,R3 i R2 is set to the bitwise inverse of the
; contents of R3.

; Simple uses of instructions that does not write a result:

CMP RO,R1 ; Compare the contents of RO with RI1
CMP RO, #&80 ; Compare the contents of RO with &80
TEQS R4,#3 ; Test R4 for eguality with 3

; (The 8 is in fact redundant as the assembler
;i inserts it automatically)

; S8imple use of a two operand instruction:
ADD RO,R1,R2 ; RO=R1+R2

; Conditional execution of an instruction:
ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5

; Use of the 5 bit to alter the PS5R:
ADDS RO,R1,#1 ; RO=R1+1, and set N,Z,C,V

; Use of a register specified shift:
SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract the result
; from R5, and put the answer into R4

; Use of an immediate shift:
MOV RO,R1,LSL#2 ;i The contents of Rl are shifted left by
; 2 bits and transferred to RO.

72

i

T

'

CPU instruction set

R

Using ADC to implement multi-word additions. For example a 64 bit ADD:

ADDS R4,R2,R0
ADC R5,R3,R1

]
:

’

Add least significant 32 bits updating carry
Add most significant 32 bits and carry
from previous

Using SBC to implement multi-word subtractions. For example:

SUBS R4,R2,R0 ;
SBC R5,R3,R1 ;
:

Do least significant word of subtraction
Do most significant word, taking account
of the borrow. This does the 64 bit
subtraction (R5,R4)=(R3,R2)-(R1,R0}

Changing to user mode and returning from a subroutine:
; Assume non-user mode here

TEQP R15,#0

MOV RO, RO
MOV PC,R14

Returning from a subroutine and
MOVS PC,R14 .

Change to user mode and clear N,%,C,V,I,F
NB R15 is here in the Rn position,

so it comes without the PSR flags

No-op to aveid mode change hazard

Return from subroutine

(R14 is a banked register)

restoring the PSR:
return from subroutine and restore the PSR

73

PSR transfer (MRS, MSR)

O T e e

PSR transfer (MRS, MSR)

Instructions for accessing the CPSR and SPSR registers

These instructions are not available on ARM2 and ARM?3 series processors

Instruction format

MRS (transfer PSR contents to a register)
31 2827 23 2221 1615 12 11 0

Cond 0O0O010R/OO1111] Rd |[000000000000
r Y T

Destination register

Source PSR
0 = PSR
1 = SPSR_current mode

Condition field
(see page 53)

MSR (transfer register contents to PSR)

31 2827 23 22 21 12 1 43 0
Cond O0010RY101001111100000000| Rs
i i A

Source register

Destination PSR
0 = CPSR
1 = SPS5R_current mode

Condition field
({see page 53)

Assembler syntax

MRS«cond» Rd,psr
MSR«cond» psr,Rm
MSR«cond» psrf,Rm
MSR«cond» psrf,#expression

74

CPU instruction set
e o T S s e R g = : R R S O O LN S i 2 Lo

MSR (transfer register contents or immediate value to PSR flag bits only)

31 28 2726252423 22 21 12 1 0

Cond |00(I[10Pf1010001 111 Source operand

1 T

Destination PSR
0 = CPSR
1 = SPSR_current mode

Immediate Operand
0 = Source operand is a register

1 43 0

00000000| BRm

!

Source register

1 = Source operand is an immediate value
" B 7 0

Rotate Imm

T A
Shift applied to Imm Unsigned 8 bit
immediate value

Condition field

(see page 53)

where;

«cond» is a two-character condition mnemonic; see the section The
condition field on page 53.

Rd & Rm are expressions evaluating to a valid ARM register number other
than R15.

psr is CPSR, CPSR_all, SPSRor SPSR_all.
(CPSR and CPSR_all are synonyms, as are SPSR and
SPSR_all)

psrf is CPSR_flgor SPSR_f1lg. The most significant four bits of Rm

or #expression are written to the N, Z, C and V flags
respectively.
#expression isan expression symbolising a 32 bit value.

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error,

75

PSR transfer (MRS, MSR)

76

Eo 2 SR R A e

Synopsis

These instructions allow access to the CPSR and SPSR registers;

® The MRS instruction moves the contents of the CPSR or SPSR_current mode
register to a general register,

® The MSR instruction moves the contents of a general register to the CPSR or
SPSR_current mode register.

Alternatively, the MSR instruction can write to the condition code flags of the CPSR
or SPSR_ctrrent mode register without affecting its control bits:

@ In this case the source may be either the contents of a general register or an
immediate value, and only its top four bits are used.

The instructions are encoded using the CMN, CMP, TEQ and TST instructions
without the S flag set,

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

These instructions are not available on ARM2 and ARM?3 series processors.

On ARMG6 series processors and later, they are available in all modes and
configurations. However, we recommend that you avoid using these instructions,
as you will lose backwards compatibility with older ARMs. Indeed, in the 26 bit
modes used by RISC OS (except when handling FIQs), you can access the PSR just
as you always have — for example, with TEQP

Operand restrictions

In user mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

R15 must not be specified as the source or destination register.

You must not attempt to access the SPSR in user mode, as no such register exists.

Reserved bits

Not all bits of the PSR are defined (e.g. only N, Z, C, V, |, F and M|4:0| are defined
for the ARM 6 and 7 series). The remaining ones (bits 27-8 and 5 in the ARM 6 and
7 series) are reserved for use in future versions of the ARM. The ensure future
compatibility, the following rules should be observed:

® You must preserve the reserved bits when changing the value in a PSR.

® When you are checking the PSR status, you must not rely on specific values
from the reserved bits, since they may read as one or zero in future processors.

CPU instruction set

T

You should therefore use a read-modily-write strategy when altering the control
bits of any PSR register. This involves transferring the appropriate PSR register to a
general register using the MRS instruction, changing only the relevant bits, and
then transferring the modified value back to the PSR register using the MSR
instruction.

For example, to perform a mode change:

MRS RO,CESR i Take a copy of the PSR

BIC RO,R),#0x1F ;i Clear the mode bits

ORR RO,RO, #new mode ; Set bits for new mode

M3R CPSR, RO i Write back the modified CPSR,

i changing mode

When you wish simply to change the condition flags in a PSR, you can write an
immediate value directly to the flag bits without disturbing the control bits. For
example, the following instruction sets the N, Z, C and V flags:

MSR CPSR_flg,#0xFO000000 ;i Set all the flags regardless
; of their previocus state
i (does not affect any control bits)

You must not attempt to write an 8 bit immediate value into the whole PSR, since
such an operation cannot preserve the reserved bils.

Examples
In user mode the instructions behave as follows:
MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
M5R CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- OxA
¥ (i.e. set N,C; clear Z,V)
MRS Rd, CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28)
MSR CPsSR_flg,#0x50000000 ; CPSR[31:28] <- 0Ox5

H (i.e. set Z,V; clear N,C)
MRS Rd, SPSR ; RA[31:0] <- SPSR[31:0]
MSR SPSR_all,Rm ; SPSR <mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm * SPSR_cmodeb[Bl:ZS] <= Rm[31:28]
MSR SPSR_flg,#0xC0O000000 i SPSR_<mode>[31:28] <- 0xC

5 (i.e. set N,2; clear C,V)
MRS Rd,SPSR ; RA[31:0] <- SPSR_<mode>[31:0]

77

Multiply and Multiply-Accumulate (MUL, MLA)

0 s O e R

Multiply and Multiply-Accumulate (MUL, MLA)

Instructions for performing integer multiplication, giving a 32 bit result

Instruction format
a1 28 27 22212019 16 15 12N 87 4 3 0

Cond (0000 O0O0|A|S| Rd Rn Rs (1001 BRm
A A T A ?

Operand registers
Destination register

Set condition codes
0 = do not alter condition codes
1 = set condition codes

Accumulate bit
o] = multiply
1 = multiply and accumulate

Condition field
(see page 53)
Assembler syntax

MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn

wcond» is a two-character condition mnemonic: see the section The
condition field on page 53.

«S» means to set the PSR's condition codes from the operation.

Rd, Rm, Rs & Rn are expressions evaluating to a valid ARM register number,
(Rd must not be R15 and must not be the same as Rm)

Synopsis

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to
perform integer multiplication. They give the least significant 32 bits of the product
of two 32 bit operands, and may be used to synthesize higher precision
multiplications.

The multiply form of the instruction gives Rd:=RmxRs. Rn is ignored, and should be
sel to zero for compatibility with possible future upgrades to the instruction set.

78

CPU instruction set

S

&

The multiply-accumulate form gives Rd:=RmxRs+Ru, which can save an explicit
ADD instruction in some circumstances.

The results of a signed multiply and of an unsigned multiply of 32 bit operands
differ only in the upper 32 bits; the low 32 bits are identical, As these instructions
only produce those low 32 bits, they can be used with operands which may be
considered as either signed (2's complement) or unsigned integers.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction.
The N and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z
is set if and only if the result is zero), the V flag is unaffected by the instruction, and
the C flag is set to a meaningless value.

Operand restrictions

Because of the way the Booth's algorithm has been implemented, you should
avoid certain combinations of operand registers. (ObjAsm will issue a warning if
you overlook these restrictions.)

The destination register Rd must not be the same as the Rm operand register, as Rd
is used to hold intermediate values, and Rm is used repeatedly during the multiply.

The destination register Rd must also not be R15.
All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

32 bit operation

R15 must not be used as any of Rd, Rm, Ru or Rs.

Examples
MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,
setting condition codes

79

Multiply and Multiply-Accumultate (MUL, MLA)

L

80

o O e

The multiply instruction may be used to synthesize higher precision
multiplications, for instance to multiply two 32 bit integers and generate a 64 bit

result:

mul6d
MOV al,A,LSR #16
MOV D,B,LSR #16
BIC A,A,al,LSL #16
BIC B,B,D,LSL #16
MUL C,A,B
MUL B,al,B
MUL A,D,A
MUL D,al,D

ADDS AB,A

ADDCS D,D,#&10000
ADDS c,C,A,LSL #16
ADC D,D,A,LSR #16

’
i
.

i

r

H

;A

al:= top half of A

o] top half of B

bottom half of A

B := bottom half of B

Low section of result

) Middle sections

) of result

High section of result

Add middle sections (couldn’t use
MLA as we need C correct)

Carry from above add

C is now bottom 32 bits of product
D is top 32 bits

(A, B are registers containing the 32 bil integers; C, D are registers for the 64 bit
result; al is a temporary register. A and B are overwritten during the multiply.)

Note that more recent ARM processors have a single instruction to do just this; see

the next section.

CPU instruction set

e

Multiply Long and Multiply-Accumulate Long
(UMULL, SMULL, UMLAL, SMLAL)

Instructions for performing integer multiplication, giving a 64 bit result

This instruction is only available in 32 bit mode on the ARM7M series or later

Instruction format

a1 28 27 2322212019 1615 12 11 87 43 0
Cond |0 000 1|U|A|S| RdHi | RdLo Rs (1001 Rm
A AAA a A A A

Operand registers
Destination registers

Set condition codes
0 = do not alter condition codes
1 = set condition codes

Accumulate bit
0 = multiply
1 = multiply and accumulate

Unsigned bit
0 = unsigned
1 = signed

I Condition field
(see page 53)

Assembler syntax

UMULL«cond» «S» RdLo,RdHi,Rm,Rs

SMULL«cond» «S» RdLo,RdHi,Rm,Rs

UMLAL«cond» «S» RdLo,RdHi,Rm,Rs

SMLAL«cond» «S» RdLo,RdHi,Rm,Rs

«cond» is a two-character condition mnemonic; see the section The
condition field on page 53.

«Sw» means to set the PSR’s condition codes from the operation,

RdLo, RdH1I, are expressions evaluating to a valid ARM register number other
Rm & Rs than R15,

81

Multiply Long and Muttiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL)

R

82

Synopsis

The multiply long instructions perform integer multiplication on two 32 bit
operands, and produce a 64 bit result. The multiplication can be signed or
unsigned, which — with optional accumulate — gives rise to four variations.

The multiply forms of the instruction (UMULL and SMULL) give a 64 bit result of
the form RdHi RdLo:=RmxRs.

The multiply-accumulate forms (UMLAL and SMLAL) give Rd:=RmxRs+Rn, which
can save an explicit ADD instruction in some circumstances.

The lower 32 bits of the result and of the accumulator (where used) are held in
RdlLo, and the upper 32 bits in RdHi.

The unsigned forms of the instruction (UMULL and UMLAL) treat all four registers
as unsigned numbers. The signed forms (SMULL and SMLAL) treat the two
operand registers as 2's complement signed 32 bit numbers, and the two
destination registers as a 2's complement signed 64 bit number.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

This instruction was first introduced on the ARM7M series of processor, and is only
available in 32 bit modes. This instruction is therefore unlikely to be of use under
RISC OS.

PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction,
The N and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z
is set ifand only if the result is zero), and the V and C flags are set to a meaningless
value.

Operand restrictions

R15 must not be used as any of RdHi, RdLe, Rm or Rs.

RdHi, RdLo and Rm must all specify different registers,

Examples

UMULL R1,R4,R2,R3 ;i R1,R4:=R2*R3

UMLALS R1,R5,R2,R3 ; R1,R5:=R2*R3+R1,R5,
: also setting condition codes

CPU instruction set

Ee L

Single data transfer (LDR, STR)

Instructions for loading or storing single bytes or words of data

Instruction format

31 28272625242322212019 16 15 12 11 0
Cond ‘0 1 1|PIUBWL| Rn Rd Offset
A AAAA T A A A T

Source/Destination register
Base register
Load/Store bit

0 = store to memory
1 =+ load from memory

Write-back bit
o] = no write-back
1 = write address into base

Byte/Word bit
8] = transfer word quantity
1 == transfer byte quantity

Up/Down bit
1] == down: subtract offset from base
1 = up: add offset to base

Pre/Post indexing bit
0 = post; add offset after transfer
1 = pre: add offset before transfer

Immediate offset
0 = offset is an immediate value

1 0

Immediate offset
A

Unsigned 12 bit immediate offset
1 = offset is a reqgister
1" 4 3 0]

Shift Rm
i i

Shift applied to Rm Offset register

|see below, and page 57)

Condition field
(see page 53)

83

Single data transfer (LDR, STR)

o e

84

Assembler syntax

LDR|STR«cond» «B» «T» Rd,address

LDR
STR

«cond»

«Bn

«Tn

Rd

address

loads from memory into a register.
stores from a register into memory.

is a two-character condition mnemonic; see the section The
condition field on page 53.

means to transfer a byte, otherwise a word is transferred.

means to set the W bit in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when
a pre-indexed addressing mode is specified or implied.

is an expression evaluating to a valid ARM register number,

can be:

® Anexpression which generates an address:
expression
ObjAsm will attempt to generate an instruction using the PC
as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC

relative, pre-indexed address. If the address is out of range,
an error will be generated.

e A pre-indexed addressing specification:

[Rn] offset of zero
[Rn,#expression]«ly offset of expression bytes
[Rn, «+|=»Rm«,shiftn»]« s offset of xcontents of index
register, shifted by shift.
® A post-indexed addressing specification:

[Rn],#expression offset of expression bytes
[Rn], «+|-»Rm«,shiftr offset of xcontents of index
register, shifted by shift.
Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R15 then ObjAsm will subtract 8 from the
offset value to allow for ARM pipelining.
shift is a general shift operation (see the section Shift lypes on
page 57), but note that the shift amount may not be specified by a
register,
« L» if present sets the W bit to write-back the base register.

CPU instruction set

R e s e

Synopsis

The single data transfer instructions are used to load or store single bytes or words
of data. The memory address used in the transfer is calculated by adding an offset
to or subtracting an offset from a base register. The result of this calculation may
be written back into the base register if ‘auto-indexing’ is required. If the contents
of the base are not destroyed by other instructions, the continued use of LDR (or
STR) with write back will continually move the base register through memory in
steps given by the index value. Note that ! is invalid for post-indexed addressing,
as write back is automatic in this case.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

For register to register transfers, see the section Dala processing on page 66,
particularly the MOV instruction.

Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may
be added to (U=1) or subtracted from (U=0) the base register Rn, The offset
modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0]. In the case of post-indexed addressing, the write back bit is
redundant, since the old base value can be retained by setting the offset to zero.
Therefore post-indexed data transfers always write back the modified base. The
only use of the W bit in a post-indexed data transfer is in privileged mode code;
depending on the processor, setting the W bit either forces the TRANS pin to go
LOW or forces non-privileged mode for the transfer, allowing the operating system
to generate a user address in a system where the memory management hardware
makes suitable use of this hardware.

Shifted register offset

The 8 shift control bits are described in the section Data processing on page 66, but
the register specified shift amounts are not available in this instruction class.

85

Single data transfer (LDR, STR)

b

86

Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM register and memory,

A byte load (LDRB) expects the data on bits 0 to 7 if the supplied address is on a
word boundary, on bits 8 to 15 if it is a word address plus one byte, and so on. The
selected byte is placed in the bottom 8 bits of the destination register, and the
remaining bits of the register are filled with zeroes.

A byte store (STRB) repeats the bottom 8 bits of the source register four times
across the data bus. The external memory system should activate the appropriate
byte subsystem to store the data.

A word load (LDR) or word store (STR) should generate a word aligned address.
Using a non-word-aligned addresses has non-obvious and unspecified results.

Use of R15

These instructions will never cause the PSR to be modified, even when Rd or Ra is
R15;

If R15 is specified as the base register (Rn), the PC is used without the PSR flags.
When using the PC as the base register you must remember that it contains an
address 8 bytes on from the address of the current instruction.

If R15 is specified as the register offset (Rm), the value presented will be the PC
together with the PSR,

When R15 is the source register (Rd) of a register store (STR) instruction, the value
stored will be the PC together with the PSR. The stored value of the PC will be 12
bytes on from the address of the instruction. A load register (LDR) with R15 as Rd
will change only the PC, and the PSR will be unchanged.

Address exceptions

On an ARM2 or ARM3 processor, if the address used for the transfer (ie the
unmodified contents of the base register for post-indexed addressing, or the base
modified by the offset for pre-indexed addressing) has a logic one in any of the bits
26 to 31, the transfer will not take place and the address exception trap will be
taken.

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running
in 26 bit modes.

CPU instruction set

Note that it is only the address actually used for the transfer which is checked. A
base containing an address outside the legal range may be used in a pre-indexed
transfer if the offset brings the address within the legal range, and likewise a base
within the legal range may be modified by post-indexing to outside the legal range
without causing an address exception.

Data Aborts

A transfer to or from a legal address may still cause problems for a memory
management system. For instance, in a system which uses virtual memory the
required data may be absent from main memory. The memory manager can signal
a problem by taking the processor ABORT pin HIGH, whereupon the data transfer
instruction will be prevented from changing the processor state and the Data Abort
trap will be taken. It is up to the system software to resolve the cause of the
problem, then the instruction can be restarted and the original program continued.

32 bit operation

R15 must not be used as the register offset (Rm),

IfR15 is specified as the base register (Ru), you must not use write-back — including
post indexing.

For a post-indexed LDR or STR, Rm and Rn must not be the same register.

When using write-back — including post indexing —Rd and Rn must not be the same

register.
Examples

STR R1,[BASE, INDEX]! ; store R1 at BASE+INDEX (both of
; which are registers) and write
; back address to BASE

STR Rl,[BASE], INDEX ; store Rl at BASE and writeback
; BASE+INDEX to BASE

LDR R1, [BASE,#16] ; load Rl from contents of BASE+16.
» Don't write back

LDE R1l, [BASE, INDEX,LSL #2] ; load R1 from contents of
; BASE+INDEX*4

LDREQE R1, [BASE,#5] ; conditionally load byte at BASE+5
; into Rl bits 0 to 7, filling bits
: 8 to 31 with zeroces

STR R1,PLACE ;generate PC relative offset to

; address PLACE
Mare instructions
PLACE

87

Block data transfer (LDM, STM)

e o TR

Block data transfer (LDM, STM)

Instructions for loading or storing any subset of the currently visible registers

Instruction format

31 2827 252423222120 19 16 15 0
LCond 10 0|PUSWL| Rn Register list
A A A ‘I‘ A .Il A
|
Register list
(see below)

Base register
Load/Store bit

= store to memory
1 = load from memory

Write-back bit
o] = nowrite-back
1 = write address into base

PSR & force user bit
0 == donot load PSR or force user mode
1 = load PSR or force user mode

Up/Down bit
o] = down: subtract offset from base
1 = up: add offset to base

Pre/Post indexing bit
0 = post: add offset after transfer
1 = pre: add offset before transfer

Condition field
(see page 53)

Assembler syntax
LDM | STM«cond»FD |ED|FA|EA|IA|IB|DA|DB Rn«!»,RIist«

LDM loads from memory into register(s).
STR stores from register(s) into memaory.
«cond» is a two-character condition mnemonic; see the section The

condition field on page 53,

Rn is an expression evaluating to a valid ARM register number.

88

e

ol

CPU instruction set

Rlist is either a comma-separated list of registers and/or of register
ranges indicated by hyphens, all enclosed in {} (e.g.
{R0,R2-R7,R10}); or an expression evaluating to the 16 bit

operand.

«ln if present sets the W bit to write-back the base register

«”n if present sets the S bit to load the PSR with the PC, or forces
storing of user bank registers when in a non-user mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes. There
are alternative forms for each mnemonic: one form is intended for use with stacks,
and describes the type of stack the addressing mode supports; the other form
merely describes the instructions functionality. The equivalencies between the
names and the values of the bits in the instruction are:

Name Stack

pre-increment load LDMED
post-increment load LDMFD
pre-decrement load LDMEA
post-decrement load LDMFA
pre-increment store STMFA
post-increment store STMEA
pre-decrement store STMFD
post-decrement store STMED

Other
LDMIB
LDMIA
LDMDB
LDMDA
STMIB
STMIA
STMDB
STMDA

L bit
I

I
I
I
0
0
0
0

P bit
I
0

D = e D e

bit

u
I
I
0
0
|
|
0
0

In the stacking forms of the mnemonics (FD, ED, FA and EA), the F and E referto a
full or empty stack, and the A and D refer to an ascending or descending stack:

e A full stack is one in which the stack pointer points to the last data item
written, whereas an empty stack is one in which the stack pointer points to the

first free slot,

@ A descending stack is one which grows from high memory addresses to low
ones, whereas an ascending stack is one which grows from low memory

addresses to high ones,

The other forms of the mnemonics (1A, 1B, DA and DB) simply mean Increment
After, Increment Before, Decrement After, and Decrement Before,

89

Block data transfer (LDM, STM)

Lo

90

T

R

o]

Synopsis

Block data transfer instructions are used to load (LDM) or store (STM) any subset
of the currently visible registers from or to memory. They support all possible
stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for
moving large blocks of data around main memory.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

The register list

The instruction can cause the transfer of any registers in the current bank (and
non-user mode programs can also transfer to and from the user bank, see below).
The register list is a 16 bit field in the instruction, with each bit corresponding to a
register. A 1 in bit 0 of the register field will cause RO to be transferred, a 0 will
cause it not to be transferred; similarly bit | controls the transfer of R1, and so on,

Any subset of the registers, or all the registers, may be specified. The only
restriction is that the register list must not be empty.

Addressing modes

The transfer addresses are determined by the contents of the base register (Rn),
the pre/post bit (P) and the up/down bit (U). The registers are stored such that the
lowest register is always at the lowermost address in memory, the highest register
is always at the uppermost address, and the others are stored in numerical order
between them.

(As an aside, this means that instruction sequences such as:

STMIA RO, {R1,R2}
LDMIA RO, {R2,R1}

do not swap the contents of Rl and R2.)

By way of illustration, consider the transfer of R1, R5 and R7 in the case where
Rn=1000H and write back of the modified base is required (W=1). The figures
below show the sequence of register transfers, the addresses used, and the value
of Rn after the instruction has completed.

(In all cases, had write back of the modified base not been required (W=0), Rn
would have retained its initial value of 1000H unless it was also in the transfer list
of a load multiple register instruction, when it would have been overwritten with
the loaded value)

CPU instruction set

100CH 100CH
Rn —| 1000H R1 1000H
0FF4H OFF4H
(1 (2
100CH Rn —» 100CH
R7
R5 R5
R1 1000H R1 1000H
OFF4H OFF4H
(3) (4)

Figure 5.8 Post-increment addressing

100CH 100CH
R
Rn —»| 1000H 1000H
OFF4H OFF4H
(1) (2
100CH Rn —»| R7 100CH
RS RS
R1 R1
1000H 1000H
OFF4H OFF4H

(3) (4)

Figure 5.9 Pre-increment addressing

91

Block data transfer (LDM, STM)

e

100CH 100CH
Rn —»| 1000H 1000H
R1
OFF4H OFF4H
) (@)
100CH 100CH
1000H R7 1000H
R5 R5
R R1
OFF4H Rn —»| OFF4H

Figure 5.10 Post-decrement addressing

100CH 100CH
Rn —» 1000H 1000H
OFF4H R1 OFF4H
(1 (2
100CH 100CH
1000H 1000H
R7
R5 R5
R1 OFF4H Rn —» R1 OFF4H
@) (4)
Figure 5.11 Pre-decrement addressing

92

CPU instruction set

e T e e e

Transfer of R15

Whenever R15 is stored to memory, the value transferred is the PC together with
the PSR flags. The stored value of the PC will be 12 bytes on from the address of the
STM instruction.

If R15 is in the transfer list of a load multiple (LDM) instruction the PC is
overwritten, and the effect on the PSR is controlled by the S bit. If the S bit is 0 the
PSR is preserved unchanged, but il the S bit is | the PSR will be overwritten by the
corresponding bits of the loaded value. In user mode, however, the [, F. M0 and M1
bits are protected from change whatever the value of the S bit. The mode at the
start of the instruction determines whether these bits are protected, and the
supervisor may return to the user program, re-enabling interrupts and restoring
user mode with one LDM instruction.

Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15 is in the transfer list. For LDM instructions the S bit is redundant if
R15 is not in the transfer list.

In both the above cases, the S bit is instead used to force transfers in non-user

modes to use the user register bank instead of the current register bank. This is
useful for saving and restoring the user state on process switches, You must not
use write back of the base when forcing user bank transfer.

For an LDM instruction, you must take care not to read from a banked register
during the following cycle; if in doubt insert a no-op.

Use of R15 as the base

When the base is the PC, the PSR bits will be used to form the address as well, so
unless all interrupts are enabled and all flags are zero an address exception will
occur. Also, write back is never allowed when the base is the PC (setting the W bit
will have no effect).

Inclusion of the base in the register list

When writeback is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle, A STM which includes storing the base, with the base as the first
register to be stored, will therefore store the unchanged value, whereas with the
base second or later in the transfer order, will store the modified value. An LDM
will always overwrite the updatea base if the base is in the list.

93

Block data transfer (LDM, STM)

T

94

S e e R T O e T e

When the base register is in the list of registers

® The base register may be stored and if write back is not in operation, no
problem will occur.

® [f write back is in operation, the STM is performed in the following order:
I write lowest-numbered register to memory
2 perform the write back

3 write other registers to memory in ascending order,

Thus, if the base register is the lowest-numbered register in the list, its original
value is stored. Otherwise, its written back value is stored.

e Ifthe base register is loaded the pop operation will continue successfully. The
entire block transfer runs on an internal copy of the base, and will not be aware
that the base register has been loaded with a new value.

Address exceptions

On an ARM2 or ARM3 processor, if the address of the first transfer falls outside the
legal address space (ie has a | somewhere in bits 26 to 31), an address exception
trap will be taken. The instruction will first complete in the usual number of cycles,
though an STM will be prevented from writing to memory, The processor state will
be the same as if a data abort had occurred on the first transfer cycle (see next
section).

Only the address of the first transfer is checked in this way; if subsequent
addresses over- or under-flow into illegal address space they will be truncated to
26 bits but will not cause an address exception trap,

Later versions of the ARM do not generate address exceptions when in a 32 bit
configuration (as used by RISC OS from very soon after reset), even when running
in 26 bit modes.

Data Aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the ABORT
signal HIGH. This can happen on any transfer during a multiple register load or
store, and must be recoverable if the ARM is to be used in a virtual memory
system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM takes little action until
the instruction completes, whereupon it enters the data abort trap. The memory
manager is responsible for preventing erroneous writes to the memory. The only

CPU instruction set

T e T

T TR O e R e

change to the internal state of the processor will be the modification of the base
register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions
When ARM detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible

e Overwriting of registers stops when the abort happens. The aborting load will
not take place, but earlier ones may have overwritten registers. The PC is
always the last register to be written, and so will always be preserved,

e The base register is restored, to its modified value if write-back was requested.
This ensures recoverability in the case where the base register is also in the
transfer list, and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort)
before restarting the instruction.

32 bit operation

For an STM instruction where R15 is in the transfer list, the PC is stored, but the
CPSR is not stored to the current mode's SPSR. (The intuitive extension of the
26 bit behaviour would be for the CPSR to be stored.)

For an LDM instruction where R15 is in the transfer list, if the S bit is set then as
well as overwriting the PC, the SPSR for the current mode is moved to the CPSR.
This is what you would expect as an extension of the 26 bit behaviour,

The S bit must not be set for instructions that are to be executed in user mode,

You must not use R15 as the base register.

Examples
LDMFD SP!,{RO,R1,R2} ; unstack 3 registers
STMIA BASE, {R0-R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; save RO to R3 to use as workspace
; and R14 for returning

BL somewhere : this nested call will overwrite R14

LDMED SP!,{R0O-R3,R15}"; restore workspace and return
; {(also restoring PSR flags)

95

Single data swap (SWP)

e

Single data swap (SWP)

[nstruction for swapping atomically between a register and external memory

This instruction is not available on the ARM2 processor

Instruction format
31 28 27 2322212019 16 15 12 11 8 7 4°3]

Cond (000 10/BIOO] Rn Rd 0000100% Rm

A A A T A

Source register
Destination register
Base register
Byte/Word bit

0 = transfer word quantity
1 == transfer byte quantity

Condition field
(see page 53)

Assembler syntax

SWP«cond»«B» Rd,Rm, [Rn]

«condn is a two-character condition mnemonic; see the section The
condition field on page 53.

«Bx means to transfer a byte, otherwise a word is transferred
Rd, Rm & Rn are expressions evaluating to a valid ARM register number,
Synopsis

The data swap instruction is used to swap atomically a byte or word quantity
between a register and external memory. It is implemented as a memory read
followed by a memory write to the same address, which are 'locked’ together. The
processor cannot be interrupted until both operations have completed, and the
memory manager is warned to treat them as inseparable. This instruction is
particularly useful for implementing software semaphores.

96

CPU instruction set

T A

e

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. It then writes the contents
of the source register (Rm) to the swap address, and stores the old memory
contents in the destination register (Rd). The same register may be specified as
both the source and destination; its contents are correctly swapped with memory,

The LOCK output goes HIGH for the duration of the read and write operations to

signal to the external memory manager that they are locked together, and should

be allowed to complete without interruption. This is important in multi-processor
systems, where the swap instruction is the only indivisible instruction which may
be used to implement semaphores. Control of the memory must not be removed

from a processor while it is performing a locked operation.

The SWP instruction is not supported by the ARM2 processor, but is available in
the ARM3, in the ARM2aS macrocell (as used for the ARM250 chip in the Acorn
A3010, 3020 and A4000), and on the ARM®6 series and later.

Bytes and words

This instruction may be used to swap a byte (B=1) or a word (B=0) between a
register and memory. The SWP instruction is implemented as a LDR followed by a
STR, and the action of these is as described in Single data transfer (LDR, STR) on
page 83,

Use of R15

You must not use R15 as an operand (Rd, Rn or Rm in a SWP instruction.

Data aborts

If the address used for the swap is unacceptable to a memory management system,
the internal MMU or external memory manager can flag the problem by driving
ABORT HIGH. This can happen on either the read or the write cycle (or both), and
in either case, the Data Abort trap will be taken. It is up to the system software to
resolve the cause of the problem. Once this has been done, the instruction can be
restarted and the original program continued,

Examples

SWP RO,R1,[R2] i load RO with the word addressed by R2,
; and then store Rl at the same address

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4,
; and then store bits 0 to 7 of R3 at the
; same address

SWPEQ RO,RO,[R1] ; conditicnally swap the word addressed
;i by Rl with the contents of RO

97

Software interrupt (SWI)

A T T

Software interrupt (SWI)

Instruction for entering supervisor mode in a controlled manner

Instruction format

31 28 27 24 23 0

Cond (1111 Comment field (ignored by ARM)

[

Condition field
(see page 53)

Assembler syntax

SWI«cond» expression

«cond» is a two-character condition mnemonic; see the section The
condition field on page 53.

expression isevaluated and placed in the comment field as a SWI number
(which is ignored by ARM).

Synopsis

The software interrupt instruction is used to enter supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which
effects the mode change. The PC is then forced to the SWi vector, If this address is
suitably protected (by external memory management hardware) from modification
by the user, a fully protected operating system may be constructed.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.
Return from the supervisor

The PC and PSR are saved in R14_svc upon entering the software interrupt trap,
with the PC adjusted to point to the word after the SWI instruction.
MOVS R15,R14 svc will return to the calling program, and restore the PSR,

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to
use software interrupts within itself it must first save a copy of the return address.

98

T T

Comment field

CPU instruction set

T

The bottom 24 bits of the instruction are ignored by ARM, and may be used to
communicate information to the supervisor code, For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions (as in RISC OS).

32 bit operation

The CPSR is saved in SPSR_svc. The MOVS R15,R14_svc instruction used to
return to the supervisor restores the CPSR from SPSR_svc. This is what you would
expect as an extension of the 26 bit behaviour.

Examples
SWI
SWI

SWINE

Read
WriteI+"k"

0

get next character from read stream

; output a "k" to the write stream

; conditionally call supervisor
; with 0 in comment field

The above examples assume that suitable supervisor code exists at the SW| vector
address, for instance;

B

EntryTable
DCD
DCD
DeD

Zero EQU
ReadC EQU
WriteI EQU

Supervisor

Supervisor

ZeroRtn
ReadCRtn
WriteIRtn

256
512

SWI entry point

; addresses of supervisor routines

; SWI has routine required in bits 8-23, data (if any) in bits 0-7.
; Assumes R13 svc points to a suitable stack.

S5TM

BIC
LDR
BIC
MOV
ADR
LDR

WriteIRtn

LDM

R13, {RO-R2,R14}

RO,R14,#&FC0O00003
RO, [RO,#-4]
RO,RO,#&FFO0000D
Rl,R0,LSR #8
R2,EntryTable
R15,[R2,R1,L5L #2)

R13, {R0O-R2,R15}"

; Save work registers and return

; address

; Clear PSR bits

; Get SWI instruction

; Clear top 8 bits

; Get routine offset

; Get start address of entry table
; Branch to appropriate routine

; Enter with character in RO bits 0-7

Restore workspace and return.

99

Coprocessor data operations (CDP)

[b 2 i e R e e

Coprocessor data operations (CDP)

Instruction for telling a coprocessor to perform some internal operation

Instruction format
31 28 27 24 23 20 19 16 15 12 1 87 543 0

Cond |1 11 0|CPOpc| CRn CRd CP# | CP |0| CRm

A T T A A

|
‘ Coprocessor operand register
Coprocessor information
-Coprocessor number
= Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

Condition field
(see page 53)

Assembler syntax
CDP«cond» CP#,operation,CRd,CRn,CRm«,info»

«cond» is a two-character condition mnemonic; see the section The
condition field on page 53,

CP# is the unique number of the required coprocessor, which must be
a symbol defined via the CP directive.

operation is evaluated to a constant and placed in the CP Opc field,

CRd, CRn, are expressions evaluating to a valid coprocessor register number,

& CRm which must be a symbol defined via the CN directive.

info where present is evaluated to a constant and placed in the CP
field.

100

CPU instruction set

v

Synopsis

This instruction is used to tell a coprocessor to perform some internal operation.
No result is communicated back to ARM, and it will not wait for the operation to
complete. The coprocessor could contain a queue of such instructions awaiting
execution, and their execution can overlap other ARM activity, allowing the
coprocessor and ARM to perform independent tasks in parallel.

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM; the remaining bits are used by
coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain
its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on
the contents of CRn and CRm, and place the result in CRd.

Restriction

Current ARM chips have a fault in the implementation of CDP which will cause a
Software Interrupt to take the Undefined Instruction trap if the SW1 is the next
instruction after the CDP. This problem only arises when a hardware coprocessor is
attached to the system, but if it is ever intended to add hardware to support a CDP
(rather than trapping to an emulator) the sequence CDP SWI should be avoided.

Examples

CDP pl,10,CR1,CR2,CR3 ; Request coprocessor 1 to do
; operation 10 on CR2 and CR3,
; and put the result in CR1.

CDPEQ p2,5,CR1,CR2,CR3,2 If 2 flag is set, reguest
coprocessor 2 to do operation 5
(type 2} on CRZ2 and CR3,

and put the result in CR1.

101

Coprocessor data transfers (LDC, STC)

o e

S e

Coprocessor data transfers (LDC, STC)

Instructions for transferring data between the coprocessor and main memory

Instruction format

31 28272625242322212019 1615 12 1 87 0
Cond |1 1 O|P|UNW|L| Rn CRd CP# Offset
A AAAAa T A A A

Unsigned 8 bit immediate offset
Coprocessor number

Coprocessor source/destination register
Base register

L%adetcre bit

= store to memory
1 = load from memory

— Write-back bit
0 = no write-back
1 = write address into base

Transfer length
Up/Down bit
0

= down: subtract offset from base
1 = up: add offset to base

Pre/Post indexing bit
0 = post: add offset after transfer
1 == pre: add offset before transfer

— Condition field
{see page 53)

102

e o

Assembler syntax

CPU instruction set

LDC|STC«cond» «L» CP#,CRd,address

LDC
STC

«Lin

«cond»

CP#

CRd

address

loads from memory to coprocessor (L=1].
stores from coprocessor to memory (L=0),

when present perform long transfer (N=1), otherwise perform
short transfer (N=0).

is a two-character condition mnemonic; see the section The
condition field on page 53.

is the unique number of the required coprocessor, which must be
a symbol defined via the CP directive.

is an expression evaluating to a valid coprocessor register
number, which must be a symbol defined via the CN directive.
can be:
® An expression which generates an address:
expression
ObjAsm will attempt to generate an instruction using the PC
as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC

relative, pre-indexed address. If the address is out of range,
an error will be generated.

® A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,#expression]«!l» offset of expression bytes

@ A post-indexed addressing specification:

[Rn],#expression offset of expression bytes

Rn is an expression evaluating to a valid ARM register number.
Note if Rn is R15 then ObjAsm will subtract 8 from the offset
value to allow for ARM pipelining.

« L » if present sets the W bit to write-back the base register.

103

Coprocessor data transfers (LDC, STC)

T

104

S S R e S T T

Synopsis

These instructions are used to load (LDC) or store (STC) a subset of the
coprocessor's registers directly to memory. ARM is responsible for supplying the
memory address, and the coprocessor supplies or accepts the data and controls
the number of words transferred,

The instruction is only executed if the condition is true. The various conditions are
defined in the section The condition field on page 53.

The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or
accept the data, and a coprocessor will only respond if its number matches the
contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is
the register to be transferred (or the first register where more than one is to be
transferred), and the N bit is used to choose one of two transfer length options. For
instance N=0 could select the transfer of a single register, and N=1 could select the
transfer of all the registers for context switching.

Addressing modes

ARM is responsible for providing the address used by the memory system for the
transfer, and the addressing modes available are a subset of those used in single
data transfer instructions. Note, however, that the immediate offsets are 8 bits
wide and specify word offsets for coprocessor data transfers, whereas they are 12
bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and added to (U=1) or
subtracted from (U=0) a base register (Rn); this calculation may be performed
either before (P=1) or after (P=0) the base is used as the transfer address. The
modified base value may be overwritten back into the base register (if W=1), ar the
old value of the base may be preserved (W=0). Note that post-indexed addressing
modes require explicit setting of the W bit, unlike LDR and STR which always
write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction,
is used as the address for the transfer of the first word. The second word (if more
than one is transferred) will go to or come from an address one word (4 bytes)
higher than the first transfer, and the address will be incremented by one word for
each subsequent transfer.

CPU instruction set

A Y e e o I R R R

Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of
the address will appear on A|1:0] and might be interpreted by the memory system.

Use of R15

If Rnis R15, the value used will be the PC without the PSR flags, with the PC being
the address of this instruction plus 8 bytes. Write-back to the PC is inhibited, and
the W bit will be ignored.

Address exceptions

If the address used for the first transfer is illegal the address exception mechanism
will be invoked. Instructions which transfer multiple words will only trap if the first
address is illegal; subsequent addresses will wrap around inside the 26 bit address
space,

Data aborts

If the address is legal but the memory manager generates an abort, the data abort
trap will be taken. The writeback of the modified base will take place, but all other
processor state will be preserved. The coprocessor is partly responsible for
ensuring that the data transfer can be restarted after the cause of the abort has
been resolved, and must ensure that any subsequent actions it undertakes can be
repeated when the instruction is retried.

32 bit operation

If R15 is specified as the base register (Ri), you must not use write-back.

Examples

LDC pl,CR2,table ; Load CR2 of coprocessor 1 from
; address table, using a PC relative

; address.

STCEQL p2,CR3,[R5,#24]! ; Conditionally store CR3 of
coprocessor 2 into an address

; 24 bytes up from R5, write this

; address back into RS, and use long
; transfer option (probably to store

; multiple words)

Note that though the address offset is expressed in bytes, the instruction offset
field is in words. ObjAsm will adjust the offset appropriately.

105

Coprocessor register transfers (MCR, MRC)

T

R e e e

Coprocessor register transfers (MCR, MRC)

[nstructions for communicating information between ARM and a coprocessor

Instruction format
AN 28 27 2423 212019 16 15 12 11 a7 543 0

Cond |11 1 0CPOpqlL| CRn Rd CP# | CP |1| CRm
A r'y ? T & A

Coprocessor information

Coprocessor number
ARM source/destination register

— Coprocessor source/destination register
Lc(:]adetore bit

= store to coprocessor
1 = load from coprocessar

Coprocessor operand register

Coprocessor operation code

Condition field
{see page 53)

Assembler syntax

MCR |MRC«cond» CP#,operation,Rd,CRn,CRm«,info»

MCR moves from coprocessor to ARM register (L=1).
MRC moves from ARM register to coprocessor (L=0).
wcond» is a two-character condition mnemonic; see the section The

condition field on page 53.

Cr# is the unique number of the required coprocessor, which must be
a symbol defined via the CP directive.

operation is evaluated to a constant and placed in the CP Opc field.

Rd is an expression evaluating to a valid ARM register number.

106

CPU instruction set

S A e I T O TR L R R

CRn & CRm are expressions evaluating to a valid coprocessor register number,
which must be a symbol defined via the CN directive.
info where present is evaluated to a constant and placed in the CP
field.
Synopsis

These instructions are used to communicate information directly between ARM
and a coprocessor. An example of a coprocessor to ARM register transfer (MCR)
instruction would be a FIX of a floating point value held in a coprocessor, where
the floating point number is converted into a 32 bit integer within the coprocessor,
and the result is then transferred to an ARM register. A FLOAT of a 32 bit value in
an ARM register into a floating point value within the coprocessor illustrates the
use of an ARM register to coprocessor transfer (MRC}).

An important use of this instruction is to communicate control information
directly from the coprocessor into the ARM PSR flags. As an example, the result of
a comparison of two floating point values within a coprocessor can be moved to
the PSR to control the subsequent flow of execution.

Note that the ARM6 series and later have an internal coprocessor (#15) for control
of on-chip functions. Accesses to this coprocessor are performed during
coprocessor register transfers.

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 53.

The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which
coprocessor is being called upon to respond.

The CP Opc, CRu, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other
interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields
specify the operation the coprocessor is required to perform, CRn is the
coprocessor register which is the source or destination of the transferred
information, and CRm is a second coprocessor register which may be involved in
some way which depends on the particular operation specified.

107

Coprocessor register transfers (MCR, MRC)

S R S A S T T——

Transfers to R15

When a coprocessor register transfer to ARM has R15 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
(respectively) of the PSR. The other bits of the transferred word are ignored, and
the PC and other PSR flags are unaffected by the transfer.

Transfers from R15

A coprocessor register transfer from ARM with R15 as the source register will store
the PC together with the PSR flags.

32 bit operation

Transfers to RI5

When a coprocessor register transfer to ARM has R15 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively) of the CPSR. The other bits of the transferred word are ignored, and
the PC and other PSR flags are unaffected by the transfer. This is what you would
expect as an extension of the 26 bit behaviour.

Transfers from R15

A coprocessor register transfer from ARM with R15 as the source register will store
the PC+12. Unlike the 26 bit behaviour, it does not store the CPSR to the
COProcessor.

Examples

MRC 2,5,R3,CR5,CR6 Request Co-Proc 2 to perform
operation 5 on CR5 and CR6, and
transfer the (single 32 bit word)

result back to R3.

MRCEQ 3,9,R3,CR5,CR6E,2 Conditionally request Co-Proc 2 to
perform operation 9 (type 2} on
CR5 and CR6, and transfer the

result back to R3.

108

CPU instruction set

Undefined instructions

Undefined instructions

Instruction format

31 2827 2524 54 3 0

lCond ‘011‘xxxxxxxxxxxxxxxxxxxx1xxxx

Assembler syntax

At present ObjAsm has no mnemonics for generating these instructions. If they are
adopted in the future for some specified use, suitable mnemonics will be added to
ObjAsm. Until such time, these instructions should not be used.

Synopsis
If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering these
instructions to any coprocessors which may be present, and all coprocessors must
refuse to accept them by letting CPA float HIGH.

(Note that some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 5 or bit 6

changed to a 1. These instructions should be avoided, as their action may change
in future ARM implementations. |

The instruction is only executed if the condition is true. The various conditions are
defined in section The condition field on page 53.

109

Instruction set summary

R T T O e e e e e e

Instruction set summary

Instructions available on ARM, briefly summarised

Instruction formats
3 28 272625242322212019 16 15 121 8 7 543 1]
Cond |0 0|I|Opcode|S| Rn Rd Operand? DS Procetng,
Cond (00000O0|AIS| Rd Rn Rs (1001 Rm Multiply
Cond 0000 1|UlA|IS| RdHi | RdlLo Rs |1001| Rm Multiply Long

Cond (000 10|Blo0| Rn Rd [0000(1001 Rm | Bod%ue
Cond [0 1|1|PlUBWL| Rn | Rd Offset ok O
Cond [D1T 1[X X X X X XXXXXXXXXXXXXXX/1|xxx x| Undefined
Cond |1 0 0/P|UISMWL| Rn Register list S -

I Co-nd 101|L Offset Branch
Cond |11 0/PUNWIL| Rn | CRd | CP# | Offset R e
Cond (111 0[CPOpc| CRn | CRd | CP# | CP |o| CRm | Sorosessar
Cond 111 0CPOpdL| CRn | Rd | CP# | CP |1| CRm | pobosessor
Cond |11 11 Comment field (ignored by ARM) F;?L‘::’j;?

Assembler syntax
B|BL«cond» expression

MOV | MVN«cond» «S» Rd,op2
CMN |CMP | TEQ | TST«cond» «P» Rn,op2
ADC |ADD |AND | BIC | OR |ORR | RSB |RSC | SBC | SUB«cond» «S» Rd,Rn, op2

MRS«cond» Rd,psr
MSR«cond» psr,Rm
MSR«cond» psrf,Rm
MSR«cond» psrf,#expression

MUL«cond»«S» Rd,Rm,Rs
MLA«cond»«S» Rd,Rm,Rs,Rn

UMULL | SMULL | UMLAL | SMLAL«cond» «S» RdLo,RdHi,Rm,Rs

LDR|STR«cond» «B»«T» Rd,address

110

CPU instruction set

Ee R e S : ool

LDM|STM«cond»FD|ED|FA|EA|IA|IB|DA|DB Rn«!»,R1Iist«"™»

SWP«cond» «B» Rd,Rm, [Rn]

SWI«cond» expression

CDP«cond» CP#,operation,CRd,CRn,CRm«,info»

LDC | STC«cond»«L» CP#,CRd,address

MCR|MRC«cond» CP#,operation,Rd,CRn,CRm«,info»

Parameters for the above, alphabetically sorted

address

«Bu

can be:

An expression which generates an address:

expression

ObjAsm will attempt to generate an instruction using the PC
as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range,
an error will be generated.

A pre-indexed addressing specification:

[Rn] offset of zero
[Rn,#expression]«!» offset of expression bytes
[Rn, «+|-»Rm« ,shiftr]« !»offset of xcontents of index

register, shifted by shift
(not available for LDC/STC).

A post-indexed addressing specification:

[Rn],#expression offset of expression bytes

[Rn], «+|-»Rm«,shiftn offset of xcontents of index
register, shifted by shift
(not available for LDC/STC).

Rn and Rm are expressions evaluating to a valid ARM register
number. Note if Rn is R15 then ObjAsm will subtract 8 from the
offset value to allow for ARM pipelining.

shift is a general shift operation (see the section Shift types on

page 57), but note that the shift amount may not be specified by a
register.

« 1 » if present sets the W bit to write-back the base register.

means to transfer a byte, otherwise a word is transferred.

111

Instruction set summary

S R R O R O S e e T

«condn is a two-character condition mnemonic; see the section The
condition field on page 53.

CP# is the unique number of the required coprocessor, which must be
a symbol defined via the CP directive,

CRd, CRn, are expressions evaluating to a valid coprocessor register number,

& CRm which must be a symbol defined via the CN directive.

expression for Band BL is a program-relative expression describing the
branch destination, from which ObjAsm calculates the offset:
for SWI, it is evaluated and placed in the comment field as a SWI
number (which is ignored by ARM.

#expression isan expression symbolising a 32 bit value,

If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.

info where present is evaluated to a constant and placed in the CP
field.
«Lin when present perform long transfer (N=1), otherwise perform

short transfer (N=0).

op2 may be any of the operands that the barrel shifter can produce.
The syntax is Rm« , shift» or #expression
If #expression is used, ObjAsm will attempt to match the
expression by generating a shifted immediate 8-bit field. If this is
impossible, it will give an error.
shift is shiftname Rs or shiftname #expression, or
RRX (rotate right one bit with extend). shiftnames are; ASL,
LSL, LSR, ASR, and ROR. (ASL is a synonym for LSL, and the two
assemble to the same code.) See Shift types on page 57.

operation is evaluated to a constant and placed in the CP Opc field.

«Py means to take the result of a CMN, CMP, TEQ or TST operation,
and move it to the bits of R15 that hold the PSR - even though the
instruction has no destination register. Bits corresponding to the
PC are masked out, as are (in User mode) the |, F and mode bits.

psr is CPSR, CPSR_all, SPSR or SPSR_all.
(CPSR and CPSR_all are synonyms, as are SPSR and
SPSR all)

112

CPU instruction set

L e R

psrf is CPSR_flgor SPSR_flg. The most significant four bits of Rm
or #expression are written to the N, Z, C and V flags
respectively.

Rd, RdLo, RdH1,
Rm Rn & Rs are expressions evaluating to a valid ARM register number.

Rlist is either a comma-separated list of registers and/or of register
ranges indicated by hyphens, all enclosed in {} (e.g.
{RO,R2-R7,R10}); or an expression evaluating to the 16 bit
operand.

«S» means to set the PSR’'s condition codes from the operation,
ObjAsm forces this for CMN, CMP, TEQ and TST, provided the P
flag is not specified.

«Tw means to set the W bit in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when
a pre-indexed addressing mode is specified or implied.

@l if present sets the W bit to write-back the base register.

«™n if present sets the S bit to load the PSR with the PC, or forces
storing of user bank registers when in a non-user mode.

Synopsis
For a detailed synopsis of the various instructions, see the following sections:
Section Page
Branch, Branch with Link (B, BL} 63
Data processing 66
PSR transfer (MRS, MSR) 74
Multiply and Multiply-Accumulate (MUL, MLA) 78
Multiply Long and Multiply-Accumulate Long 81
(UMULL, SMULL, UMLAL, SMLAL)
Single data transfer (LDR, STR) 83
Block data transfer (LDM, STM) 88
Single data swap (SWP) 96
Software interrupt (SWI) 98
Coprocessor data operations [CDP) 100
Coprocessor data transfers (LDC, STC) 102
Coprocessor register transfers (MCR, MRC] 106
Undefined instructions 109
Further instructions 114

113

Further instructions

Further instructions

The above completes the description of all the basic ARM instructions. However,
ObjAsm understands a number of other instructions, which it translates into
appropriate basic ARM instructions.

Extended range immediate constants

Synopsis
In the case of an instruction such as
MOV RO, #VALUE

ObjAsm will evaluate the expression and produce a CPU instruction to load the
value into the destination register. This may not in fact be the machine level
instruction known as MOV, but the programmer need not be aware that an
alternative instruction has been substituted, A common example is

MOV Rn,#-1

which the CPU cannot handle directly (as -1 is not a valid immediate constant).
ObjAsm will accept this syntax, but will convert it and generate object code for

MVN Rn,#0

which results in Rn containing —1. Such conversions also takes place between the
following pairs of instructions:

BIC/AND
e ADD/SUB
e ADC/SBC
e CMP/CMN

114

CPU instruction set

S S R T e R e g ey

The ADR instruction

Assembler syntax

ADR«cond» register,expression

Synopsis

This produces an address in a register. ARM does not have an explicit 'calculate
effective address’ instruction, as this can generally be done using ADD, SUB, MOV
or MVN. To ease the construction of such instructions, ObjAsm provides an ADR
instruction.

The expression may be register-relative, program-relative or numeric:

® Register-relative: ADD|SUB register,register2,#constant
will be produced, where register2 is the register to which the expression is
relative.

® Program-relative: ADD|SUB register,PC,#constant

will be produced,
® Numeric: MOV |MVN register,#constant
will be produced,

In all three cases, an error will be generated if the immediate constant required is
out of range,

If the program has a fixed origin (that is, if the ORG directive has been used), the
distinction between program-relative and numeric values disappears. In this case,
ObjAsm will first try to treat such a value as program-relative. If this fails, it will try
to treat it as numeric. An error will only be generated if both attempts fail.

The ADRL instruction

Assembler syntax

ADR«cond»L register,expression

Synopsis

This form of ADR is provided by ADRL and allows a wider collection of effective
addresses to be produced. ADRL can be used in the same way as ADR, except that
the allowed range of constants is any constant specified as an even rotation of a
value less than &10000, Again program-relative, register relative and numeric

115

Literals

i i A S A R A S R R R R R R R i e R

forms exist. The result produced will always be two instructions, even if it could
have been done in one. An error will be generated if the necessary immediate
constants cannot be produced.

Literals

Assembler syntax

LDR register,=expression

Synopsis
Literals are intended to enable the programmer to load immediate values into a
register which might be out of range as MOV/MVN arguments,
ObjAsm will take certain actions with literals. It will:
e if possible, replace the instruction with a MOV or MVN,
® otherwise, generate a program-relative LDR and if no such literal already exists
within the addressable range, place the literal in the next literal pool.

Program-relative expressions and imported symbols are also valid literals. See the
section Organisaltional directives — END, ORG, LTORG and KEEP on page 141 for
further information.

116

R

Floating point instructions

A R

Lo

he ARM has a general coprocessor interface. The first coprocessor available is

one which performs floating point calculations to the IEEE standard. To ensure
that programs using floating point arithmetic remain compatible with all
Archimedes machines, a standard ARM floating point instruction set has been
defined. This can be implemented invisibly to the customer program by one of
several systems offering various speed performances at various costs. The current
‘bundled' floating point system is the software only floating point emulator
module. Floating point instructions may be incorporated into any assembler text,
provided they are called from user mode. These instructions are recognised by the
Assembler and converted into the correct coprocessor instructions.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight
variations in accuracy between hardware and software — refer to the instructions
supplied with the coprocessor for details of these variations.

117

Programmer’s model

il A i A : i : i TR O

S R O ST

Programmer’s model

The ARM IEEE floating point system has eight ‘high precision’ floating point registers,
FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to
memory, using one of the formats described below.

There is also a floating point status register (FPSR) which, like the ARM's combined PC
and PSR, holds all the necessary status and control information that an application
is intended to be able to access. It holds flags which indicate various error
conditions, such as overflow and division by zero. Each flag has a corresponding
trap enable bit, which can be used to enable or disable a ‘trap’ associated with the
error condition. Bits in the FPSR allow a client to distinguish between different
implementations of the floating point system.

There may also be a floating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example,
there are privileged instructions to turn the floating point system on and off, to
permit efficient context changes. Typically, hardware based systems have an FPCR,
whereas software based ones do not.

Available systems

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use:

System name System components

Old FPE Versions of the floating point emulator up to (but not
including) 4.00
FPPC Floating Point Protocol Convertor (interface chip between

ARM and WE32206), WE32206 (ATET Math Acceleration Unit
chip), and support code

FPE 400 Versions of the floating point emulator from 4.00 onwards

FPA ARM Floating Point Accelerator chip, and support code
The results look the same to the programmer. However, if clients are aware of
which system is in use, they may be able to extract better performance. For

example, compilers can be tuned to generate bunched FP instructions for the FPE
and dispersed FP instructions for the FPA, which will improve overall performance

118

SR

Precision

Floating point instructions

e e e T e e e

The old FPE has two different variants. Versions up to (but not including) 3.40 do

not provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide
support for the FPPC hardware — if it is fitted. All versions of the FPE 400 provide

support for the FPA hardware,

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

® Round to nearest
e Round to +infinity (P)
® Round to -infinity (M)
® Roundtozero (Z).

The default is 'round te nearest’; in the event of a tie, this rounds to ‘nearest even’.
If any of the others are required they must be given in the instruction,

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15
bit exponent and a sign bit. Specific instructions that work only with single
precision operands may provide higher performance in some implementations,
particularly the fully software based ones,

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in
one of five formats (only four of which are visible at any one time, since P and EP
are mutually exclusive):

119

Floating point number formats

O S i i &=

120

IEEE Single Precision (S)

31 30 2322 0

Sign | Exponent | msb Fraction Isb

Figure 6.1 Single precision format
If the exponent is 0 and the fraction is 0, the number represented is +0.

If the exponent is 0 and the fraction is non-zero, the number represented is
+0 fraction x 27126,

If the exponent is in the range | to 254, the number represented is
t|.,|[m{.'[fﬂﬂ * 2(7.){00}1.-»1[— [2?_

If the exponent is 255 and the fraction is 0, the number represented is %,
If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number] is

represented. [f the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN,

IEEE Double Precision (D)

31 30 2019 0
First word | Sign Exponent msb Fraction Isb
Second word | msb Fraction Isb

Figure 6.2 Double precision format
If the exponent is 0 and the fraction is 0, the number represented is +0.

If the exponent is 0 and the fraction is non-zero, the number represented is
<0 fraction x 271922,

If the exponent is in the range | to 2046, the number represented is

+] ,IEF’GC[‘EIOH * zexpmwrlr— IDZ?:_

If the exponent is 2047 and the fraction is 0, the number represented is =oc,

If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Floating point instructions

R e R e e

Double Extended Precision (E)

31 30 1514 0

First word | Sign Zeros Exponent
Secondword| J | msb Fraction Isb
Third word | msb Fraction Isb

Figure 6.3 Double extended precision format

If the exponent is 0, | is 0, and the fraction is 0, the number represented is +0.

If the exponent is 0,] is 0, and the fraction is non-zero, the number represented
is +0 fraction x 2716382

e Ifthe exponent is in the range 0 to 32766, | is 1, and the fraction is non-zero,
the number represented is 1 fraction x 2°xPenent = 16383

e Ifthe exponent is 32767, is 0, and the fraction is 0, the number represented is
*+0C,

e |If the exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range | to
32766 and | is 0; or the exponent is 32767, | is |, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in 'E' format is guaranteed to maintain precision
when loaded back by the same floating point system in this format. Note that in
the past the layout of E format has varied between floating point systems, so
software should not have been written to depend on it being readable by other
floating point systems. For example, no software should have been written which
saves E format data to disc, to have then been potentially loaded into another
system. In particular, E format in the FPPC system varies from all other systems in
its positioning of the sign bit. However, for the FPA and the FPE 400, the E format
is now defined to be a particular form of IEEE Double Extended Precision and will
not vary in future.

121

Floating point number formats

R

122

S S O OO R OO R

Packed Decimal (P)

31 0

First word | Sign e3 e2 el el di8 di7 di6

Second word| di5 di4 d13 di2 di1 di10 d9 d8

Third word| d7 dé d5 d4 d3 d2 d1 do

Figure 6.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d18 is the most significant digit of the significand d, and e3 of the exponent ¢, The
significand has an assumed decimal point between d18 and d17, and is normalised
so that for a normal number | = d18 = 9. The guaranteed ranges ford and e are 17
and 3 digits respectively; d0, d1 and e3 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53: a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of +oc or a NaN (see below).

e [fthe exponent's sign is 0, the exponent is 0, and the significand is 0, the
number represented is +0.
Zero will always be output as +0, but either +0 or =0 may be input.

e Ifthe exponentisin the range 0 to 9999 and the significand is in the range | to
9.999999999999999999, the number represented is +d x 10*"

e If the exponent is &FFFF (ie all the bits in e3 - e0 are set] and the significand is
0, the number represented is +x

® Ifthe exponent is &FFFF and d0 - d17 are non-zero, a NaN (not-a-number] is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

Floating point instructions

Expanded Packed Decimal (EP)
31 0
First word| Sign e6 e5 ed e3 e2 el el

Second word| d23 dz22 d21 d20 d19 d18 d17 die

Third word| d15 di4 di3 di2 di1 d10 d9 ds

Fourth word| d7 dé ds d4 d3 d2 d1 do

Figure 6.5 Expanded packed decimal formal

The sign nibble contains both the significand's sign (top bit) and the exponent's
sign (next bit); the other two bits are zero.

d23 is the most significant digit of the significand d, and e6 of the exponent ¢. The
significand has an assumed decimal point between d23 and d22, and is normalised
so that for a normal number | = d23 < 9. The guaranteed ranges for d and ¢ are 21
and 4 digits respectively; d0, d1, d2, e4, €5 and e6 may always be zero in a particular
system. (By comparison, an S format number has 9 digits of significand and a
maximum exponent of 53; a D format number has 17 digits in the significand and a
maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F save for a
representation of 00 or a NaN (see below).

e [f the exponent's sign is 0, the exponent is 0, and the significand is 0, the
number represented is =0.

Zero will always be output as +0, but either +0 or =0 may be input.

e |[f the exponent is in the range 0 to 9999999 and the significand is in the range
I to 9.99999999999999999999999 the number represented is =d x 10*°

e If the exponent is &FFFFFFF (ie all the bits in e6 - e0 are set) and the
significand is 0, the number represented is +ec.

e Ifthe exponent is &FFFFFFF and d0 - d22 are non-zero, a NaN (not-a-number)
is represented. If the most significant bit of d23 is set, il is a non-trapping NaN;
otherwise it is a trapping NaN.,

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if
you can guarantee that the floating point system you are using supports it.

123

Floating point status register

E

Floating point status register

124

There is a floating point status register (FPSR) which, like ARM's combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains
the IEEE flags but not the result flags — these are only available after floating point
compare operations.

The FPSR consists of a system D byte, an exception trap enable byte, a system
control byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System ID Trap Enable System Control | Exception Flags

Figure 6.6 Floaling point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems, and clear for software (ie slow) systems. Note that the System 1D is
read-only.

The following System IDs are currently defined:

System System ID
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating
point exception, which are described in the section Cumulative Exception Flags Byte on
page 126,

23 22 21 20 19 18 17 16

FPSR Reserved INX UFL OFL DVZ VO

Figure 6.7 Exceplion Lrap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a
floating point instruction, and the corresponding bit is also set in the exception
trap enable byte then that exception trap will be taken.

Floating point instructions

s R O D R R R R : T S e

Currently, the reserved bits shall be written as zeros and will return 0 when read.

System Control Byte

These control bits determine which features of the floating point system are in use.

15 14 13 12 1 10 9 8

FPSR Reserved AC EP SO NE ND

Figure 6.8 System control byte

By placing these control bits in the FPSR, their state will be preserved across
context switches, allowing different processes to use different features if necessary.
The following five control bits are defined for the FPA system and the FPE 400

ND No Denormalised numbers

NE NaN Exception

SO Select synchronous Operation of FPA

EP Use Expanded Packed decimal format

AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read.
Note that all bits (including bits 8 - 12) are reserved on FPPC and early FPE
systems.

ND — No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to
prevent lengthy execution times when dealing with denormalised numbers, (Also
known as abrupt underflow or flush to zero.) This mode is not IEEE compatible but
may be required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-conformant way.
NE — NaN exception bit

If this bit is set, then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change
of format will not cause an exception (for compatibility with programs designed to
work with the old FPE).

125

Floating point status register

126

=

R T R T e T R R R R R e e e e S

SO - Select synchronous operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and
ARM will be made to busy-wait until the instruction has completed. This will allow
the precise address of an instruction causing an exception to be reported, but at
the expense of increased execution time,

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which
time the ARM may have executed a number of instructions following the one that
has failed. In such cases the address of the instruction that caused the exception
will be imprecise.

The state of this bit is ignored by software-only implementations, which always
operate synchronously.

EP - Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed
Decimal numbers, Use of this expanded format allows conversion from extended
precision to packed decimal and back again to be carried out without loss of
accuracy.

[f this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers,

AC - Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be
tested by means of single ARM conditional instructions than is possible using the
original interpretation of the C flag {as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal.

Cumulative Exception Flags Byte

7 6 5 4 3 2 1 0

FPSR Reserved INX UFL OFL Dvz VO

Figure 6.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag
in bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception
is also delivered to the user's program in a manner specific to the operating

Floating point instructions
f

R

O S ; i

system. (Note that in the case of underflow, the state of the trap enable bit
determines under which conditions the underflow flag will be set.) These flags can
only be cleared by a WFS instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

IVO - invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed.
Invalid operations are:

Any operation on a trapping NaN (not-a-number)

e Magnitude subtraction of infinities, eg +% + —

e Multiplication of 0 by

e Division of 0/0 or e/

® xREMywherex=x<ory=0
(REM is the ‘remainder after floating point division” operator.)
Square root of any number < 0 (but v(-0) = -0)
Conversion to integer or decimal when overflow, s« or a NaN operand make it
impossible
If overflow makes a conversion to integer impossible, then the largest positive
or negative integer is produced (depending on the sign of the operand) and
IVO is signalled

e Comparison with exceptions of Unordered operands

® ACS, ASN when argument’s absolute value is > 1

@ SIN, COS, TAN when argument is =%

® LOG, LGN when argument is < 0

® POW when first operand is < 0 and second operand is not an integer, or first

operand is 0 and second operand is < 0

® RPW when first operand is not an integer and second operand is < 0, or first
operand is = 0 and second operand is 0.

DVZ - division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite, non-zero number.
A correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(0) and for LGN(0). Negative infinity is returned if the
trap is disabled.

127

Floating point status register

e

128

G

R e R e e

OFL - overflow

The OFL flag is set whenever the destination format's largest number is exceeded
in magnitude by what the rounded result would have been were the exponent
range unbounded. As overflow is detected after rounding a result, whether
overflow occurs or not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format’s
largest finite number. This depends on the rounding mode and floating point
system used.

UFL — underflow

Two correlated events contribute to underflow:

® Tininess — the creation of a tiny non-zero result smaller in magnitude than the
format's smallest normalised number.

® Loss of accurdacy — a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL fag is set in different ways depending on the value of the UFL trap enable
bit. If the trap is enabled, then the UFL flag is set when tininess is detected
regardless of loss of accuracy. If the trap is disabled, then the UFL flag is set when
both tininess and loss of accuracy are detected (in which case the INX flag is also
set); otherwise a correctly signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not
after some operations depends on the rounding mode.

INX - inexact

The INX flag is set if the rounded result of an operation is not exact (different from
the value computable with infinite precision), or overflow has occurred while the
OFL trap was disabled, or underflow has occurred while the UFL trap was disabled.
OFL or UFL traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN{0)
and COS(1).

The old FPE and the FPPC system may differ in their handling of the INX flag.
Because of this inconsistency we recommend that you do not enable the INX trap.

Floating point instructions

e O e e T

Floating Point Control Register

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system. The user mode of the
ARM is not permitted to use this register (since the right is reserved to alter it
between implementations) and the WFC and RFC instructions will trap if tried in
user mode,

You are unlikely to need to access the FPCR; this information is principally given

for completeness.

The FPPC system
The FPCR bit allocation in the FPPC system is as shown below:

31 8 7 & & 4 3 2 1 0

FPCR —= PR |SBd|SBn|SBm| — | AS | EX | DA

Figure 6.10 FPCR bit allocation in the FPPC system

Bit Meaning

31-8 Reserved — always read as zero

7 PR Last RMF instruction produced a partial remainder
6 SBd Use Supervisor Register Bank 'd’

5 SBn Use Supervisor Register Bank 'n’'

4 SBm Use Supervisor Register Bank 'm’

3 Reserved — always read as zero

2 AS Last WE322006 exception was asynchronous

I EX Floating point exception has occurred

0 DA Disable

Reserved bits are ignored during write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

129

Floating Point Control Register

e

The FPA system

In the FPA, the FPCR will also be used to return status information required by the
support code when an instruction is bounced. You should not alter the register
unless you really know what you're doing. Note that the register will be read
sensitive; even reading the register may change its value, with disastrous
consequences.

The FPCR bit allocation in the FPA system is provisionally as follows.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCR|IRU| — IE [MO|EO| — oP — S1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0O

(cont'd)| OP DS SB|AB|RE|EN|PR| RM |OP S2

Figure 6.11 FPCR bit allocalion in the FPA system

Bit Meaning

31 RU Rounded Up Bit

30 Reserved

29 Reserved

28 IE Inexact bit

27 MO Mantissa overflow

26 EO Exponent overflow

25, 24 Reserved

23-20 OP AU operation code

19 PR Al precision

18-16 S5l Al source register |

15 OoP AU operation code

14-12 DS AU destination register

11 SB Synchronous bounce: decode (R14) to get opcode

10 AB Asynchronous bounce: opcode supplied in rest of word
9 RE Rounding Exception: Asynchronous bounce occurred during

rounding stage and destination register was written
8 EN Enable FPA (default is off)
7 PR Al precision
6.5 RM AU rounding mode
4 OoPp AU operation code
3-0 S2 AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

130

Floating point instructions

e

Assembler directives and syntax

The precision letter determines the format used to store the number in memory, as

follows:
Letter Precision Memory usage
S Single I word
D Double 2 words
E Extended 3 words
P Packed BCD 3 words

EP Extended Packed BCD 4 words

For details of these formats see the section Floating point number formals on page 119,

Floating point number input

A floating point number recognised by the assemblers consists of an optional sign,
followed by an optional mantissa part followed by an optional exponent part. One
or other of the mantissa part and the exponent part must be present. The mantissa
part consists of a sequence of zero or more decimal digits, followed by an optional
decimal point followed by a sequence of zero or more decimal digits. If present, the
mantissa must contain a non-zero number of digits overall. The exponent part
begins with ‘e or 'E', followed by an optional sign, followed by a sequence of one
or more decimal digits.

Examples are;
1
0.2
5E9
E-2
-.7
+31.415926539E-1

The value generated represents the mantissa multiplied by ten to the power of the
exponent, where the mantissa is taken to be one if missing, and the exponent is
taken to be zero if missing. All reading is done to double precision, and is then
rounded to single precision as required. The required precision is determined by
the context as shown in the sections Fleating point store loading directives on page 132
and Fleating point literals on page 133,

NOFP directive

If you know that your code should not use floating point instructions and want to
ensure that you don't accidentally include them, you can use the NOFP directive It
must occur before any floating point instructions or directives,

Syntax: NOFP

131

The instruction set

S T T M

Floating point register equating: FN
The directive FN is used to assign a floating point register number 0-7 to a symbol,
Syntax: 1abel FN numeric expression

Floating point register numbers are taken to be constants when included in
arbitrary expression, but only floating point register names are valid when a
floating point register is required.

Floating point store loading directives

Directives DCFS and DCFD are provided to load store with respectively single and
double precision floating point numbers, Single precision floating point numbers
occupy one word of store, double precision floating point numbers occupy two
words, but are not constrained to be double word aligned.

Syntax: label DCFx floating point number«,floating point number»

where the syntax of floating point numbers is defined in the section Floating point
number input above,

?label will have the value of the number of bytes of code generated by its
defining line in a way analogous to DCD.

The instruction set

Floating point coprocessor data transfer

op«conditionnprec Fd,addr

op is LDF for load, STF for store

condition is one of the usual ARM conditions

prec is one of the usual floating point precisions
addr is [Rn])«,#offsetn» or [Rn,#offset]u«!n

(«!» if present indicates that writeback is to take place.)
Fd is a floating point register symbol (defined via the FN directive).

Load (LDF) or store (STF) the high precision value from or to memaory, using one of
the five memory formats, On store, the value is rounded using the 'round to
nearest’” rounding method to the destination precision, or is precise if the
destination has sufficient precision. Thus other rounding methods may be used by
having previously applied some suitable floating point data operation; this does
not compromise the requirement of rounding once only’, since the store operation
introduces no additional rounding error.

132

Floating point instructions

e O O G il S e e e

The offset is in words from the address given by the ARM base register, and is in the
range —1020 to +1020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless,

You should not use R15 as the base register if writeback will take place.
Examples:

LDFS FO,[RO] load FO from address held in RO
(single precision)
store number held in F1 at R2

as a packed decimal number

-

STFP F1,[R2]

- mE ms

Floating point literals

LDFS and LDFD can be given literal values instead of a register relative address,
and the Assembler will automatically place the required value in the next available
literal pool. In the case of LDFS a single precision value is placed, in the case of
LDFD a double precision value is placed. Because the allowed offset range within a
LLDFS or LDFD instruction is less than that for a LDR instruction (=1020 to +1020
instead of —=4095 to +4095), it may be necessary to code LTORG directives more
frequently if floating point literals are being used than would otherwise be
necessary.

Syntax: LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer

The LFM and SFM multiple data transfer instructions are supported by the
assemblers, but are not provided by the FPPC system, or by some versions of the
old FPE:

® versions 2.80 - 2.84 do not support them
e versions 2.85 - 3.39 do support them

e version 3.40 — which is effectively a version of 2.80 that also provides FPPC
hardware support — does not support these instructions,

Attempting to execute these instructions on systems that do not provide them will
cause undefined instruction traps, so you should only use these instructions in
software intended for machines you are confident are using an appropriate version
of the old FPE, or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation: such a transfer otherwise
requires several LDF or STF operations. The multiple transfers are therefore useful

133

The instruction set

134

i TR e

S &

for efficient stacking on procedure entry/exit and context switching. These new
instructions are the preferred way to preserve exactly register contents within a
program,

The values transferred to memory by SFM occupy three words for each register, but
the data format used is not defined, and may vary between floating point systems.
The only legal operation that can be performed on this data is to load it back into
floating point registers using the LFM instruction. The data stored in memory by an
SFM instruction should not be used or modified by any user process.

The registers transferred by a LFM or SFM instruction are specified by a base
floating point register and the number of registers to be transferred. This means
that a register set transferred has to have adjacent register numbers, unlike the
unconstrained set of ARM registers that can be loaded or saved using LDM and
STM, Floating point registers are transferred in ascending order, register numbers
wrapping round from 7 to 0: eg transferring three registers with F6 as the base
register results in registers F6, F7 then FO being transferred.

The assembler supports two alternative forms of syntax, intended for general use
or just stack manipulation:

op«condition» Fd,count,addr
op«conditionnstacktype Fd,count,[Rn]«!»

op is LFM for load, SFM for store.

condition is one of the usual ARM conditions.

Fd is the base floating point register, specified as a floating point
register symbol (defined via the FN directive).

count is an integer from 1 to 4 specifying the number of registers to be
transferred.

addr is [Rn]«,#offset» or [Rn,#offset]u«ln

(« !» if present indicates that writeback is to take place).

stacktype is FD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) is in words from the
address given by the ARM base register, and is in the range —1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the
base register; but in post-indexed mode the assembler forces writeback for you, as
without write back post-indexing is meaningless.

You should not use RI15 as the base register if writeback will take place.

Floating point instructions

S Lo e A S A

Examples:

SFMNE F6,4,[R0O] if NE is true, transfer F6, F7,
FO0 and Fl to the address

contained in RO

~ ma e

LFMFD F4,2,[R13]!
LFM F4,2,[R13],#24

load F4 and F5 from FD stack -
equivalent to same instruction
in general syntax

- ma ma

Floating point coprocessor register transfer

FLT«condition»prec«round» Fn,Rd
FLT«condition»prec«round» Fn,#value
FIX«condition»«round» Rd,Fn
WFS«condition» Rd

RFS«condition» Rd

WFC«condition» Rd

RFC«condition» Rd

«round» is the optional rounding mode: P, M or Z; see below,
Rd is an ARM register symbol.
Fn is a floating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4,5, 10, 0.5. Note that these values
must be written precisely as shown above, for instance ‘0.5 is correct but '.5" is not.

FLT Integer to Floating Point Fin .= Rd

FIX Floating point to integer Rd .= Fm

WFS Write Floating Point Status FPSR := Rd

RFS Read Floating Point Status Rd := FPSR

WFC Write Floating Point Control FPC .= Rd Supervisor Only
REC Read Floating Point Control Rd .= FPC Supervisor Only

The rounding modes are:

Mode Letter

Nearest (no letter required)
Plus infinity P

Minus infinity ™M

Zero Z

135

The instruction set

136

e T

Floating point coprocessor data operations

The formats of these instructions are:

binop«conditionwprec«rounds Fd,Fn,Fm
binop«condition»prec«round» Fd,Fn#value
unop«condition»prec«round» Fd,Fm
unop«condition»prec«round» Fd,#value

binop
unop
Fd

Fn
Fm

#value

is one of the binary operations listed below

is one of the unary operations listed below

is the FPU destination register

is the FPU source register (binops only)

is the FPU source register

S

is a constant, as an alternative to Fm. [t must be 0,1, 2.3, 4.5, 10

or 0.5, as above.

The binops are:

ADF
MUF
SUF
RSF
DVF
RDF
POW
RPW
RMF

FML
FDV
FRD
POL

Add

Multiply
Subtract
Reverse Subtract
Divide

Reverse Divide
Power

Reverse Power
Remainder

Fast Multiply

Fast Divide

Fast Reverse Divide
Polar angle

The unops are:

MVF
MNF
ABS
RND
saT

Move

Move Negated
Absolute value

Round to integral value
Square root

Fd -= Fn + Fm

Fd = Fn x Fm

Fd .= Fn - Fm

Fd .= Fm — Fn

Fd :=Fn/Fm

Fd :=Fm/Fn

Fd := Fn to the power of Fm
Fd .= Fm to the power of Fn
Fd := remainder of Fn / Fm
(Fd .= Fn — integer value of (Fn/ Fm) x Fm)
Fd .= Fn x Fm

Fd .=Fn/Fm

Fd :=Fm/Fn

Fd := polar angle of Fu, Fm
Fd .= Fm

Fd .= —Fm

Fd := ABS (Fm)

Fd .= integer value of Fm
Fd .= square root of Fm

Floating point instructions

S

S i R R

LOG Logarithm to base 10 Fd .= log Fm

LGN Logarithm to base e Fd .= In Fm

EXP Exponent Fd .= e to the power of Fm
SIN Sine Fd .= sine of Fm

Cos Cosine Fd .= cosine of Fm

TAN Tangent Fd -= tangent of Fm

ASN Arc Sine Fd := arcsine of Fm

ACS Arc Cosine Fd .= arccosine of Fm

ATN Arc Tangent Fd = arctangent of Fm

URD Unnormalised Round Fd := integer value of Fm (may be abnormal)
NRM Normalise Fd -= normalised form of Fm

Note that wherever Fm is mentioned, one of the floating point constants 0, 1, 2, 3,
4,5, 10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast” instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

Rounding is done only at the last stage of a SIN, COS etc - the calculations to
compute the value are done with ‘round to nearest’ using the full working
precision,

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer
op«conditionnprecvround» Fm,Fn

op is one of the following:

CMF Compare floating compare Frn with Fm
CNF Compare negated floating compare Frn with —Fm
CMFE Compare floating with exception compare Fn with Fm
CNFE Compare negated floating with exception compare Fn with —Fm

wcondition» an ARM condition.

prec a precision letter

«round» an optional rounding mode: P. M or Z
Fm A floating point register symbol.

Fn A floating point register symbol.

137

Finding out more...

Compares are provided with and without the exception that could arise if the
numbers are unordered (ie one or both of them is not-a-number). To comply with
IEEE 754, the CMF instruction should be used to test for equality {ie when a BEQ
or BNE is used afterwards) or Lo test for unorderedness (in the V flag). The CMFE
instruction should be used for all other tests (BGT, BGE, BLT, BLE afterwards).

When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than ie Fn less than Fm (or —Fm)

Z Equal

C Greater than or equal ie Fin greater than or equal to Fm (or —Fm)
V Unordered

Note that when two numbers are not equal, N and C are not necessarily opposites,
If the result is unordered they will both be clear,

When the AC bit in the FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than

% Equal

e Greater than or equal or unordered
v Unordered

In this case, N and C are necessarily opposites.

Finding out more...

Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLS| Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:

ISBN 0-13-781618-9,

138

7 Directives

S : s T T

A

his chapter describes the directives available in the assembler, which provide a
powerful range of extra features.

Storage reservation and initialisation - DCB, DCW and DCD

DCB Defines one or more bytes: can be replaced by =
DCW Defines one or more half-words (16-bit numbers)
DCD Defines one or more words: can be replaced by &
% Reserves a zeroed area of store

The syntax of the first three directives is:
«label» directive expression-list

DCD can take program-relative and external expressions as well as numeric ones.
In the case of DCB, the expression-list can include string expressions, the characters
of which are loaded into consecutive bytes in store. Unlike C-strings, ObjAsm
strings do not contain an implicit trailing NUL, so a C-string has to be fabricated
thus:

C string DCB "C string",0
The syntax of % is:
«label» % numeric-expression

This directive will initialise to zero the number of bytes specified by the numeric
expression.

Note that an external expression consists of an external symbol followed optionally by
a constant expression. The external symbol must come first.

139

Floating point store initialisation — DCFS and DCFD

R £ E—

A S R

Floating point store initialisation — DCFS and DCFD

DCFS Defines single precision floating point values
DCFD Defines double precision floating point values
The syntax of these directives is:

«label» directive fp-constant«,fp-constantn

Single precision numbers occupy one word, and double precision numbers occupy
two; both should be word aligned. An fp-constant takes one of the following forms:

«-»integer E«-ninteger eg 1E3, -4E-9
«-»«integern.integer«E«-»integer» eg 1.0,-.1 3.1E6

E may also be written in lower case.

Describing the layout of store — " and #

140

-

Sets the origin of a storage map
Reserves space within a storage map

The syntax of these directives is:

A

expression« ,base-registers
wlabel» # expression

The * directive sets the origin of a storage map at the address specified by the
expression. A storage map location counter, @, is also set to the same address. The
expression must be fully evaluable in the first pass of the assembly, but may be
program-relative. If no # directive is used, the @ counter is set to zero. @ can be
reset any number of times using * to allow many storage maps to be established.

Space within a storage map is described by the # directive. Every time # is used its
label (if any) is given the value of the storage location counter @, and @ is then
incremented by the number of bytes reserved.

Directives

e e e e O O O O O O S S i

In a ~ directive with a base register, the register becomes implicit in all symbols
defined by # directives which follow, until cancelled by a subsequent * directive.
These register-relative symbols can later be quoted in load and store instructions.
For example:

*0,r9
4
Lab # 4
LDR r0,Lab

is equivalent to:

LDR r0,[r9,#4]

Organisational directives — END, ORG, LTORG and KEEP
END

The assembler stops processing a source file when it reaches the END directive. If
assembly of the file was invoked by a GET directive, the assembler returns and
continues after the GET directive (see Links to other source files — GET/INCLUDE on
page 142). If END is reached in the top-level source file during the first pass
without any errors, the second pass will begin. Failing to end a file with END is an
error.

ORG numeric-expression

A program'’s origin is determined by the ORG directive, which sets the initial value
of the program location counter. Only one ORG is allowed in an assembly and no
ARM instructions or store initialisation directives may precede it. If there is no
ORG, the program is relocatable and the program counter is initialised to 0.

LTORG

LTORG directs that the current literal pool be assembled immediately following it.
A default LTORG is executed at every END directive which is not part of a nested
assembly, but large programs may need several literal pools, each closer to where
their literals are used to avoid violating LDR's 4KB offset limit.

KEEP «symboln»

The assembler does not by default describe local symbols (i.e. non-exported
symbols; see Links to other object files — IMPORT and EXPORT on page 142) in its
output object file. However, they can be retained in the object file’s symbol table by
using the KEEP directive. If the directive is used alone all symbols are kept: if only
a specific symbol needs to be kept it can be specified by name.

141

Links to other object filtes — IMPORT and EXPORT

T

L

Links to other object files — IMPORT and EXPORT

IMPORT symbol«[FPREGARGS]»«,WEAK»
EXPORT symbol«[FPREGARGS,DATA, LEAF] »

IMPORT provides the assembler with a name (symbol) which is not defined in this
assembly, but will be resolved at link time to a symbol defined in another, separate
object file. The symbol is treated as a program address: if the WEAK attribute is
given the Linker will not fault an unresolved reference to this symbol, but will zero
the location referring to it. If [FPREGARGS] is present, the symbol defines a
function which expects floating point arguments passed to it in floating point
registers.

EXPORT declares a symbol for use at link time by other, separate object files.
FPREGARGS signifies that the symbol defines a function which expects floating
point arguments to be passed to it in floating point registers. DATA denotes that
the symbol defines a code-segment datum rather than a function or a procedure
entry point, and LEAF that it is a leaf function which calls no other functions.

Links to other source files — GET/INCLUDE

GET filename
INCLUDE filename

GET includes a file within the file being assembled. This file may in turn use GET
directives to include further files. Once assembly of the included file is complete,
assembly continues in the including file at the line following the GET directive.
INCLUDE is a synonym for GET.

Diagnostic generation - ASSERT and !

142

ASSERT logical-expression
.| arithmetic-expression, string-expression

ASSERT supports diagnostic generation. If the logical expression returns {FALSE}, a
diagnostic is generated during the second pass of the assembly. ASSERT can be
used both inside and outside macros.

lis related to ASSERT but is inspected on both passes of the assembly, providing a
more flexible means for creating custom error messages. The arithmetic
expression is evaluated; if it equals zero, no action is taken during pass one, but
the string is printed as a warning during pass two; if the expression does not equal
zero, the string is printed as a diagnostic and the assembly halts after pass one.

Directives

e

Dynamic listing options — OPT

The OPT directive is used to set listing options from within the source code,
providing that listing is turned on. The default setting is to produce a normal
listing including the declaration of variables, macro expansions, call-conditioned
directives and MEND directives, but without producing a pass one listing. These
settings can be altered by adding the appropriate values from the list below, and
using them with the OPT directive as follows:

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw: issues an immediate form feed and starts a new page.
8 Resets the line number counter to zero.

16 Turns on the listing of SET, GBL and LCL directives,
32 Turns off the listing of SET, GBL and LCL directives.
64 Turns on the listing of macro expansions.

128 Turns off the listing of macro expansions.

256 Turns on the listing of macro calls,

512 Turns off the listing of macro calls.

1024 Turns on the pass one listing.

2048 Turns off the pass one listing.

4096 Turns on the listing of conditional directives.

8192 Turns off the listing of conditional directives.
16384 Turns on the listing of MEND directives.

32768 Turns off the listing of MEND directives.

Titles —= TTL and SUBT

Titles can be specified within the code using the TTL (title) and SUBT (subtitle)
directives, Each is used on all pages until a new title or subtitle is called. If more
than one appears on a page, only the latest will be used: the directives alone create
blank lines at the top of the page. The syntax is:

TTL title
SUBT subtitle

143

Miscellaneous directives — ALIGN, NOFP, BLIST and ENTRY

Miscellaneous directives — ALIGN, NOFP, RLIST and ENTRY

144

ALIGN «power-of-two«,o0ffset-expression»»

After store-loading directives have been used, the program counter (PC) will not
necessarily point to a word boundary, If an instruction mnemonic is then
encountered, the assembler will insert up to three bytes of zeros to achieve
alignment. However, an intervening label may not then address the following
instruction. If this label is required, ALIGN should be used. On its own, ALIGN sets
the instruction location to the next word boundary. The optional power-of-two
parameter — which is given in bytes — can be used to align with a coarser byte
boundary, and the offsel expression parameter to define a byte offset from that
boundary.

NOFP

In some circumstances there will be no support in either target hardware or
software for floating point instructions. In these cases the NOFP directive can be
used to ensure that no floating point instructions or directives are allowed in the
code.

RLIST
The syntax of this directive is:
label RLIST list-of-registers

The RLIST (register list) directive can be used to give a name to a set of registers to
be transferred by LDM or STM. List-of-registers is a list of register names or ranges
enclosed in {} (see Block data transfer (LDM, STM) on page 88).

ENTRY

The ENTRY directive declares its offset in its containing AREA to be the unique
entry point to any program containing this AREA.

S e R R O R e e S R S S e e S R e

8 Symbolic capabilities

e o

he assembler also has a range of symbolic capabilities, with which you can set
up symbols as constants or as variables. These are described below.

Setting constants
The EQU and * directives are used to give a symbolic name to a fixed or
program-relative value. The syntax is

label EQU expression
label * expression

RN defines register names. Registers can only be referred to by name. The names
RO-R15, r0-r15, PC, pc, LR, 1r, SP and sp are predefined. Names may also be
defined for the registers used by the ARM Procedure Call Standard; see Controlling
syntax on page | 1.

FN defines the names of floating point registers. The names FO-F7 and £0-£7 are
built in. The syntax is;

label RN numeric-expression
label FN numeric-expression

CP gives a name to a coprocessor number, which must be within the range 0 to 15.
The names p0-p15 are pre-defined.

CN names a coprocessor register number; c0-c15 are pre-defined. The syntax is:

label CP numeric-expression
label CN numeric-expression

145

Local and global variables — GBL, LCL and SET

o

Local and global variables — GBL, LCL and SET

146

While most symbols have fixed values determined during assembly, variables have
values which may change as assembly proceeds. The assembler supports both
global and local variables. The scope of global variables extends across the entire
source file while that of local variables is restricted to a particular instantiation of
a macro (see the chapter Macros on page 157). Variables must be declared before
use with one of these directives.

GBLA Declares a global arithmetic variable. Values of arithmetic
variables are 32-bit unsigned integers.

GBLL Declares a global logical variable

GBLS Declares a global string variable

LCLA Declares and initialises a local arithmetic variable (initial state
zero)

LCLL Declares and initialises a local logical variable (initial state false]

LCLS Declares and initialises a local string variable (initial state null
string)

The syntax of these directives is:
directive variable-name

The value of a variable can be altered using the relevant one of the following three
directives:

SETA Sets the value of an arithmetic variable
SETL Sets the value of a logical variable
SETS Sets the value of a string variable

The syntax of these directives is:
variable-name directive expression
where expression evaluates to the value being assigned to the variable named.

(You can also declare and set the value of global variables at assembly time; see
Predefining a variable on page 12.)

T OO0 e e

Variable substitution — $

Symbolic capabilities

T O

Once a variable has been declared its name cannot be used for any other purpose,
and any attempt to do so will result in an error. However, if the § character is
prefixed to the name, the variable’s value will be substituted before the assembler
checks the line's syntax. Logical and arithmetic variables are replaced by the result
of performing a : STR: operation on them (see Unary operators on page 149); string
variables are replaced by their value.

Built-in variables

There are seven built-in variables. They are:

{PC} or.
{VAR} or @
{TRUE}
{FALSE}
{OPT}

{CONFIG}

{ENDIAN}

Current value of the program location counter.
Current value of the storage-area location counter.
Logical constant true.

Logical constant false.

Value of the currently set listing option. The OPT directive can be
used to save the current listing option, force a change in it or
restore its original value.

Has the value 32 if the assembler is in 32-bit program counter
mode, and the value 26 if it is in 26-bit mode.

Has the value "big" if the assembler is in big-endian mode, and
the value "1little” if it isin little-endian mode,

147

148

e O T

9 Expressions and operators

W O O O O O T R R R R e

xpressions are combinations of simple values, unary and binary operators, and

brackets. There is a strict order of precedence in their evaluation: expressions
in brackets are evaluated first, then operators are applied in precedence order.
Adjacent unary operators evaluate from right to left; binary operators of equal
precedence are evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions, many
of which resemble their counterparts in high-level languages.

Unary operators

Unary operators have the highest precedence (bind most tightly) so are evaluated
first. A unary operator precedes its operand, and adjacent operators are evaluated

from right to left.
Operator

?

BASE
INDEX

LEN
CHR
STR

NOT

Usage
?A

:BASE:A
:INDEX:A

:LEN:A
:CHR:A
:STR:A

+A

:NOT:A

Explanation

Number of bytes generated by line defining
label A,

If & is a PC-relative or register-relative
expression then BASE returns the number of
its register component, and INDEX the offset
from that base register.

BASE and INDEX are most likely to be of use
within macros.

Length of string A

ASCII string of A

Hexadecimal string of A. STR returns an
eight-digit hexadecimal string corresponding
to a numeric expression, or the string T or F if
used on a logical expression.

Unary plus

Unary negate.

+ and = can act on numeric, program-relative
and string expressions.

Bitwise complement of A

149

Binary operators

e e A T e
Operator Usage Explanation
LNOT :LNOT:A Logical complement of A
DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}

Binary operators

Binary operators are written between the pair of sub-expressions on which they
operate. Operators of equal precedence are evaluated in left to right order, The
binary operators are presented below in groups of equal precedence, in decreasing
precedence order,

Multiplicative operators
These are the binary operators which bind most tightly and have the highest

precedence:

Operator Usage Explanation
* A*B Multiply

/ A/B Divide

MOD A:MOD:B A modulo B

These operators act only on numeric expressions.

String manipulation operators

Operator Usage Explanation

LEFT A:LEFT:B The leftmost B characters of A
RIGHT _ A:RIGHT:B The rightmost B characters of &
cC A:CC:B B concatenated on to the end of A

In the two slicing operators LEFT and RIGHT, A must be a string and B must be a
numeric expression.

Shift operators

Operator Usage Explanation

ROL A:ROL:B Rotate A left B bits
ROR A:ROR:B Rotate A right B bits
SHL A:SHL:B Shift A left B bits
SHR A:SHR:B Shift A right B bits

The shift operators act on numeric expressions, shifting or rotating the first
operand by the amount specified by the second. Nole that SHR is a logical shift
and does not propagate the sign bit

150

Expressions and operators

B Y 4 e R R R R i

i

Addition and logical operators

Operator Usage Explanation

AND A:AND:B Bitwise AND of A and B

OR A:OR:B Bitwise OR of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B
+ A+B AddAtoB

= A-B Subtract B from A

The bitwise operators act on numeric expressions. The operation is performed
independently on each bit of the operands to produce the result.

Relational operators

Operator Usage Explanation

= =B BRequal toB

> A>B A greater than B

B A>=B A greater than or equal to B
< A<B A less than B

<= A<=B A less than or equal to B
/= A/=B A not equal to B

<> A<>B A not equal to B

The relational operators act upon two operands of the same type to produce a
logical value. Allowable types of operand are numeric, program-relative,
register-relative, and strings. Strings are sorted using ASCII ordering. String A will
be less than string B if it is either a leading substring of string B, or if the left-most
character of A in which the two strings differ is less than the corresponding
character in string B. Note that arithmetic values are unsigned, so the value of
0>-1is {FALSE}.

Boolean operators

These are the weakest binding operators with the lowest precedence.

Operator Usage Explanation

LAND A:LAND:B Logical AND of A and B

LOR A:LOR:B Logical OR of A and B

LEOR A:LEOR:B Logical Exclusive OR of A and B

The Boolean operators perform the standard logical operations on their operands,
which should evaluate to {TRUE} or {FALSE}.

151

152

O R R S R S N T O e

10 Conditional and repetitive
assembly

e e

his chapter describes the features available within the Assembler for
constructing conditional assembly statements and conditional looping
statements.

Conditional assembly

The | and | directives mark the start and finish of sections of the source file which
are to be assembled only if certain conditions are true. The basic construction is
[F... THEN... ENDIF; however, ELSE is also supported, giving the full IF._. THEN. .
ELSE.. . ENDIF conditional assembly,

The start of the section is known as the [F directive;

[logical expression or IF logical expression

This is the ELSE directive:

| or ELSE

and this is the ENDIF directive:

] or ENDIF

A block which is being conditionally assembled can contain several [|]

directives; that is, conditional assembly can be nested.

153

Conditional assembly

S R T O TR R e e

Simple use of the IF and ENDIF directives
You can use the IF and ENDIF directives (without the ELSE directive) like this:

[logical expression

The code will only be assembled if the logical expression is true; it will be skipped
if the logical expression is false.

Simple use of the IF, ELSE and ENDIF directives
Alternatively you can use all three directives, thus:

| logical expression

If the logical expression is true, the first piece of code will be assembled and the
second skipped. If the expression is false, the first piece of code will be skipped and
the second assembled.

Conditional assembly and the NoTerse option

Lines conditionally skipped by these directives are not listed unless ObjAsm is
switched from its defaull terse mode. For desktop assembly, you must choose
NoTerse from ObjAsm’s menu (see Listings on page 15); for command line usage,
you must specify the -NoTerse command line option (see page 22).

154

Conditional and repetitive assembly

g R R R N S R e e R Y

T T

An example

An example of a notional data storage routine is given below. This routine can
either use a disc or a tape data storage system. To assemble the code for tape
operation, the programmer prepares the system by altering just one line of code,
the label SWITCH.

DISC * 0
TAPE * 1
SWITCH =+ DISC
v eCodes .
[SWITCH=TAPE

...tape interface code...

1
[SWITCH=DISC
...disc interface code...

]
...code continues...

or alternatively:

DISC ¥ 0

TAFE * 1

SWITCH =+ DISC
...code., ..

[SWITCH=TAPE
...tape interface code...

...disc interface code...

1

...code continues...

The IF construction can be used inside macro expansions as easily as it is used in
the main program.

155

Repetitive assembly

T B S O S O o S

Repetitive assembly

It is often useful for program segments and macros to produce tables. To do this
they must be able to have a conditional looping statement. The Assembler has the
WHILE... WEND construction. This produces an assembly time (not runtime) loop.,

The syntax is:
WHILE logical expression

to start the repetitive block, and:

WEND
to end it
For example:
GBLA counter
counter SETA 100

WHILE counter =0

DCcD &Scounter
counter SETA counter-1
WEND

produces the same result as the following (but is shorter and less prone to typing

errors):
DCD 100
DCD 99
DCD 98
DCD 97
DCD 2
DCD 1

Since the test for the WHILE condition is made at the top of the loop, it is possible
that the source within the loop will not generate any code at all,

Listing of conditionally skipped lines is as for conditional assembly,

156

. O O R R e T R I R e e R TR B

Macros

TR R T e e T e

Macros give you a means of placing a single instruction in your source which
will be expanded at assembly time to several assembler instructions and
directives, just as if you'd written those instructions and directives within the
source at that point.

As an example, we will define a TestAndBranch instruction. This would normally
take two ARM instructions. So we tell the Assembler, by means of a macro
definition, that whenever it meets the TestAndBranch instruction, it is to insert the
code we have given it in the macro definition. This is of course a convenience; we
could just as easily write the relevant instructions out each time, but instead we let
the Assembler do it for us.

The Assembler determines the destination of the branch with a macro parameter.
This is a piece of information specified each time the macro is coded; the macro
definition specifies how it is used. In the TestAndBranch example, we might also
make the register to be tested a parameler, and even the condition to be tested for,
Thus our macro definition might be:

MACRO
$label TestAndBranch $dest,$reg,$cc ; This is called the macro prototype
; statement
S$label CMP Sreg,#0 ; These two lines are the ones that
BScec Sdest ; will be substituted in the source.
MEND ; This says the macro definition is
; finished

A use of the macro might be:

Test TestAndBranch NonZero, R0, NE

Nonfero
The result, as far as the Assembler is concerned, is;

Test CMP RO, #0
BMNE NonZero

NonZero

157

Syntax

e

Syntax

The fact that a macro is about to be defined is given by the directive MACRO in the
instruction field:

MACRO

This is immediately followed by a macro prototype statement which takes the form:
«$label» macroname «$parameter»«,Sparameters«,Sparametersy..
«$labeln if present, it is treated as an additional parameter.

« $parameter»Parameters are passed to the macro as strings and substituted
before syntax analysis. Any number of them may be given.

The purpose of the macro prototype statement is to tell the Assembler the name of
the macro being defined. The name of the macro is found in the opcode field of the
macro prototype statement.

The macro prototype statement also tells the Assembler the names of the
parameters, if any, of the macro. Parameters may occur in two places in the macro
prototype statement. A single oplional parameter may occur in the label field,
shown as $1abel above. This is normally used if the macro expansion is to
contain a program label, and is merely an aid to clarity, as can be seen in the
TestAndBranch example. Any number of parameters, separated by commas, may
occur in the operand field. All parameter names begin with the character $, to
distinguish them from ordinary program labels,

The macro prototype statement can also tell the Assembler the default values of
any of the parameters. This is done by following the parameter name by an equals
sign, and then giving the default value. If the default value is to begin or end with a
space then it should be placed within quotes. For example:

RO

Sreg
$string

a string
It is not possible to give a default value for the parameter in the label field.
For example:

MACRO
$label MACRONAME $num,$string,Setc

5label ...lots of...

Snum

$string

"the price is Sete"
1]

wononon

=
&=
=
(w]

158

Macros

e R R R A R

® MACRONAME is the name of this particular macro and $num, $string and
Setc are its parameters. Other macros may have many more parameters, or
even none at all,

e The body of the macro follows after MACRONAME, with $1abel being optional
even if it was given in the macro prototype statement.

® Setc will be substituted into the string "the price is " when the macro
is used.

® The macro ends with MEND.
The macro is called by using its name and any missing parameters are indicated by

commas, or may be omitted entirely if no more parameters are to follow, Thus,
MACRONAME may be called in various ways:

MACRONAME 9,"disc",7?
310

MACRONAME 9

on

MACRONAME ,"disc",

Local variables

Local variables are similar to global variables, but may only be referenced within
the macro expansion in which they were defined. They must be declared before
they are used, The three types of local variable are arithmetic, logical and string,
These are declared by:

Directive Local variable type Initial state
LCLA Arithmetic ZEro

LCLL Logical FALSE
LCLS String null string.

New values for local variables are assigned in precisely the same way as new
variables for global variables: that is, using the directives SETA, SETL and SETS.

Syntax: variable name SETx expression

Directive Local variable type
SETA Arithmetic

SETL Logical

SETS String

159

MEXIT directive

e e T

MEXIT directive

Default values

Macro substitut

160

Normally, macro expansion terminates on encountering the MEND directive, at
which point there must be no unclosed WHILE/WEND loops or pieces of
conditional assembly. Early termination of a macro expansion can be forced by
means of the MEXIT directive, and this may occur within WHILE/WEND loops and
conditional assembly.

Macro parameters can be given default values at macro definition time, using the
syntax:

$parameter=default value

[n the example of the macro MACRONAME already used.

MACRO
$label MACRONAME S5num,$string,Sete

$label ...lots of...

= Snum
$string

= "the price is Setec"

= 0

MEND
you could instead write $Snum=10 in the macro prototype statement. Then, when
calling the macro, a vertical bar character ' | " will cause the default value 10 to be
used rather than the value $num. For example

MACRONAME |, "disc",7
will be equivalent to-
MACRONAME 10, "disc”,7

Note that this default is not used when the macro argument is omitted — the value
is then empty.

ion method

Each line of a macro is scanned so it can be built up in stages before being passed
to the syntax analyser. The first stage is to substitute macro parameters throughout
the macro and then to consider the variables. If string variables, logical variables
and arithmetic variables are prefixed by the $ symbol, they are replaced by a string
equivalent. Normal syntax checking is performed upon the line after these
substitutions have been performed.

Macros

An important exception to these values is that vertical bar characters ('|') prevent
substitution from taking place in some circumstances. To be specific, if a line
contains vertical bars, substitution will be turned off after this first vertical bar, on
again after the second one, off again after the third, and so on. This allows the use
of dollar characters in symbols and labels (see the section Symbols on page 49 for
details).

In certain circumstances, it may be necessary to prefix a macro parameter or
variable to a label. In order to ensure that the Assembler can recognise the macro
parameter or variable, it can be terminated by a dot '." The dot will be removed
during substitution.

For example:

MACRO
$T33 MACRONAME

If the dot had been omitted, the Assembler would not have related the $T33 part
of the label to the macro statement and would have accepted $T33L25 as a label
in its own right, which was not the intention.

Nesting macros

The body of a macro can contain a call to another macro; in other words, the
expansion of one macro can contain references to macros. Macro invocation may
be nested up to a depth of 255

161

A division macro

O

S

A division macro
As a final example, the following macro does an unsigned integer division:

A macro to do unsigned integer division. It takes four parameters, each of
which should be a register name:

,
; $Div: The macro places the quotient of the division in this register -

H ie $Div := $Top DIV $Bot.

H $Div may be omitted if only the remainder is wanted.

; $Top: The macro expects the dividend in this register on entry and places

3 the remainder in it on exit - ie $Top := $Top MOD $Bot.

; SBot: The macro expects the divisor in this register onentry. It does not

H alter this register.

; $Temp:The macro uses this register to hold intermediate results. Its initial
= value is ignored and its final wvalue is not useful.

r

r

$Top, $Bot, $Temp and (if present) $Div must all be distinct registers.
The macro does not check for division by zero; if there is a risk of this
happening, it should be checked for outside the macro.

MACRO
$Label DivMod §Div,$Top,Bot,STemp

ASSERT $Top <> $Bot

ASSERT 5Top <> $Temp

ASSERT $Bot <> $Temp

["spiv" /= "M

ASSERT SDiv <> 5Top

ASSERT $Div <> S5Bot

ASSERT $Div <> $Temp

Produce an error if the
registers supplied are
not all different.

SLabel MOV $Temp, SBot i Put the divisor in $Temp
CMP STemp, $Top,LSR #1 ; Then double it until

90 MOVLS $Temp, $Temp, LSL #1 i 2 * $Temp > $Top.
CMP $Temp, $Top,LSR #1
BLS £b90
["spiv" J=""
MOV $Div, #0 i Initialise the gquotient.
]

91 CMP 5Top, $Temp ; Can we subtract STemp?
SUBCS STop, $Top, $Temp ;i If we can, do so.
["spiv /= ""
ADC $Diw, $Div, SDiv i Double $Div & add new bit
]
MOV STemp, $Temp, LSR #1 ; Halve S$Temp,
CMP 5Temp, $Bot i and loop until we've gone
BHS b1 ; past the original divisor.
MEND

162

E

e £

The statement;
Divide DivMod RO,R5,R4,R2
would be expanded to:

ASSERT R5 <> R4
ASSERT R5 <> R2
ASSERT R4 <> R2
BRSSERT RO <> RS
ASSERT RO <> R4
ASSERT RO <> R2Z

Divide MOV RZ,R4
CMP R2,R5,LSR #1
90 MOVLS R2,R2,LSL #1
CMP RZ,R5,LSR #1
BLS $b90
MOV RO, #0
91 CHP R5,R2
SUBCS R5,R5,R2
ADC RO, RO, RO
MoV R2,R2,LSR #1
CMP R2,R4
BHS 1b91

Similarly, the statement:
DivMod ,R6,R7,RB
would be expanded to-

ASSERT Ré <> R7
ASSERT Ré6 <> RE
ASSERT R7 <> R8

MOV R8,R7
CcMP R8,R6,LSR #1
90 MOVLS RB,RB,LSL #1
CHP RB,R6,LSR #1
BLS $b90
91 CMP R6,RE
SUBCS R6,R6,R8
MOV RB,RB8,LSR #1
CMP R8,R7
BHS 2b91

Note:

Macros

g

; Produce an error if the
; registers supplied are
:+ not all different

Put the divisor in RZ.

; Then double it until

2 * R2 > R5,

Initialise the quotient.
Can we subtract R27?

If we can, do so.

Double RO & add new bit.
Halve R2,

and loop until we’ve gone

; past the original divisor.

; Produce an error if the

registers supplied are
not all different.

; Put the divisor in RE.
; Then double it until

2 * R8 > R6.

Can we subtract R8?
If we can, do so.

; Halve RS,
; and loop until we’wve gone
; past the original divisor.

e Conditional assembly is used to reduce the size of the assembled code (and
increase its speed) in the case where only the remainder is wanted.

® Local labels are used to avoid multiply defined labels if DivMod is used more

than once in the assembler source.

@ The letter b’ is used in the local label references (indicating that the
Assembler should search backwards for the corresponding local labels) to
ensure that the correct local labels are found.

163

164

T R R R R R R R N

Part 3 — Developing software
for RISC OS

165

166

e T T

12 Exception handling

O e e e O T O R e

his chapter describes the processor configuration and modes used by RISC OS

when running on 32 bit architecture ARMs (i.e. ARM6 series and later), and the
ways in which this affects exception handling. If you are writing any exception
handler that you wish to run on such a processor, you must read both this chapter
and the chapter The ARM CPU on page 29, especially the section Exceptions.

RISC OS processor configuration and modes

Early in its startup code, RISC OS writes to the ARM's control register to change it
into the 32 bit program and data space configuration, where it remains. You must
not alter the processor's configuration yourself when writing code for RISC OS,

Although RISC OS runs under a 32 bit configuration, it remains in 26 bit modes for
normal operation, providing a high degree of backward compatibility with code
written to run on earlier 26 bit processors.

However, because the processor is in a 32 bit configuration, all exceptions
(including Undefined Instruction and Software Interrupt) force the processorto a
privileged 32 bit mode appropriate to the exception. There are therefore some
differences in exception handling between 26 and 32 bit architecture ARM chips,
although RISC OS provides a considerable degree of backward compatibility by
faking 26 bit behaviour on 32 bit architecture chips in most circumstances. For full
details, see the next section.

The pre-veneers

To ensure easy backward compatibility, 32 bit aware versions of RISC OS install a
pre-veneer on all hardware vectors apart from FIQ (see the section Writing to the FIQ
vector on page 168) and address exception (which is never generated by a 32 bit
configured ARM). Each pre-veneer first sets up R14 to contain a combined PC and
PSR that will return the processor to the 26 bit mode it was in when the exception
arose. [t then places the processor in the privileged 26 bit mode used by the earlier
26 bit chips for that exception. It thus effectively fakes the earlier chips’ behaviour.
The pre-veneer is called before any exception handlers that are installed with
software interfaces such as OS_ChangeEnvironment, so you can usually use such
exception handlers unchanged on all versions of RISC OS (hardware dependencies
excepted).

167

Claiming the hardware vectors

SR T

Entering 32 bit modes

One consequence of this is that you may not enter a 32 bit mode with IRQs
enabled. Were you to do so, and an IRQ were to occur, the IRQ pre-veneer would
be entered; then the IRQ handler would return you to a 26 bit mode, rather than
the 32 bit mode you were in at the time of the IRQ.

Claiming the hardware vectors

Under earlier versions of RISC OS, you could also claim the hardware vectors
directly, by overwriting the existing instruction on the vector, and replacing it
afterwards. It was your responsibility to do any housekeeping, in particular
checking for subsequent claimants before restoring the original instruction.

Under 32 bit aware versions of RISC OS, if you attempt to write to any hardware
vector other than FIQ a data abort is generated. You must instead call the new SWI
OS_ClaimProcessorVector (page 5-46 of the RISC OS 3 Programmer's Reference
Manual), passing it the address of your exception handler. The handler is installed
on the vector, and is called directly, before the pre-veneers. Such handlers are
therefore entered in a 32 bit mode.

For handlers installed directly on the vector to work across all versions of RISC OS,
you must therefore change the method of claiming and releasing the vector
depending on the version of RISC OS:

e Onversions up to RISC OS 3.1, you must write directly to the vector, doing any
appropriate housekeeping yourself

@ On later versions you must call OS_ClaimProcessorVector,

Your handler must also cope with running in both 26 bit and 32 bit modes.

Writing to the FIQ vector

On a 32 bit architecture ARM, the FIQ vector is entered in FIQ mode (i.e. the 32 bit
form of the mode). There are no pre-veneers to simulate 26 bit behaviour. To install
a FIQ handler, you must write directly to the FIQ vector, just as always.

The sample code below is the recommended way to write to the FIQ vector on both
26 and 32 bit configured processors — you can use the same code on all versions of
RISC OS. Obviously the handler you install must cope with running in both 26 bit
and 32 bit FIQ modes. In practice this is unlikely to be a problem, and most
existing handlers will run unchanged once installed.

In the code, comments that are prefixed by '32:" apply to a 32 bit configured
processor, and comments that are prefixed by ‘26 :" apply to a 26 bit configured
Processor.

168

Exception handling

e T e T

; We assume that at this point, you are already in a privileged 26 bit mode.

26: Does not alter processor mode. Reads as follows:

NOP ; 26: Encodes a NOP (TST Ra,R0}

Push Ra ; 26: Pushes entry Ra onto stack

ORR Ra, Ra, #2 11000000 ; 26: Corrupts Ra
L3
r

NOP 26: Encodes a NOP (TEQ R9,Ra)
ORR Ra, Ra, #2_10000 26: Corrupts Ra
NOP 26: Encodes a NOP (TEQ RY9,Rb)

7 32: Switch to 32 mode with IRQs and FIQs off.
7 32: Must switch interrupts off before switching mode as there can be
; 32: an interrupt after the MSR instruction but before the next one.

MRS Ra, CPSR_all ; 32: Read privileged 26 bit mode,
Push Ra ; 32: and push it onto the stack
ORR Ra, Ra, #2_11000000 ; 32: Set IRQ and FIQ disable bits
MSR CPSE_all, Ra ; 32: Disable IRQs and FIQs

ORR Ra, Ra, #2 10000 ; 32: Set M4 bit (for 32 bit mode)
MSR CPSR_all, Ra ; 32: Change to 32 bit mode

; Now do a NOP, to let things settle down:
NOP ; e.g. MOV RO,RO

Now in a suitable mode to write FIQ handler code to FIQ vector
(&1C-&FC incl.), whatever the processor configuration.

Code written should be able to run in both fig 32 and fig 26 modes,
and should end with a SUBS PC,R14,#4 to return normally.

For example we might write the handler code like this:

; Assume Rb already points to location from which to copy the handler.
MOV LR, #FIQVector ; Get address of FIQ vector
40 LDR Ra, [Rb], #4 ; Get opcode.
TEQS Ra, #0 ; All done?
STRHNE Ra, [LR], #4 ; No, so copy to FIQ area...
BNE %BT40 i -..and repeat for next opcode.

; The above may not be optimal, and is for illustration only.

i Having written FIQ vector, now need to restore the original
i privileged 26 bit mode.

26: Does not alter processor mode. Reads as follows:

; PULL Ra ;1 26: Pull entry Ra from stack

; NOP ; 26: Encodes a NOP (TST Ra,R0)

PULL Ra ;i 32: Pull saved CPSR, and

MSR CPSR_all, Ra ;i 32: Restore privileged 26 bit mode

; Now back where we started, except Ra and Rb should be treated as corrupted.
; (We must assume neither is preserved, because we don’t know the processor
; configuration.)

169

170

e e e e

13 Writing relocatable modules in
assembler

SRS eEIRESS SRS eSS eSS T BTSSR N Y Y e nEeeeRnm e e

Relocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user,

The relocatable module system provides mechanisms suitable for

e providing device drivers

e extending the set of RISC OS *commands

e providing shared services to applications (eg the shared C library)
e implementing ‘terminate and stay resident’ (TSR) applications.

All these projects require code either to be more persistent than standard RISC OS
applications or to be used by more than one application, hence resident in the
address space of more than one application. If your program does not have these
requirements it is not recommended to put it in modules, as relocatable modules
are more persistent consumers of system resources than applications, and are also
more difficult to debug.

This chapter is not intended to provide a complete set of the technical details you
need to know to construct any relocatable module. For more information on such
details, see the RISC OS 3 Programmer's Reference Manual. The points covered here
are intended to provide help for constructing relocatable modules specifically in
assembly language.

For more details of memory management in relocatable modules, you should
again see the RISC OS 3 Programmer's Reference Manual.

Unlike the construction of relocatable modules in high level languages, no tools
are provided to generate substantial standard portions of code. This means that
you have to construct the module header table, workspace routines, etc. yourself,

Note that some of the relocatable module entry points are called in SVC mode.
Such routines may use SWls implemented by other parts of RISC OS, but unlike
being in user mode, SWls corrupt R14, so this must be stored away. Floating point
instructions should not be used from SVC mode.

171

Assembler directives

5 O S e

S T o o

Assembler directives

172

ObjAsm can be used to assemble a module from a set of source files, a link step
being required to join the output object files to form the usable module, The
separation of routines into separately assembled files has several advantages.

It can be a good idea to construct a module with the module header and the small
routines/data associated with it in one source file, to be linked with the code
forming the body of the module.

Such a module header file must be linked so that it is placed first in the module
binary. To do this it should contain an AREA directive at its head such as;

AREA

!!1Module$$Header|, CODE, READONLY

Areas are sorted by type and name; a name beginning with 1" is placed before an
alphabetic name, so the above can be used to ensure first placing.

The module header source needs to contain IMPORT directives making available
any symbols referenced in the module body. In addition, the initialisation routine
should call __ RelocCode, a routine added by the linker which relocates any
absolute references to symbols when the module is initialised. If the module
header source contains the initialisation routine, it must use the IMPORT directive
to make RelocCode available.

The module header must be preceded by the ENTRY directive:
ENTRY

Module BaseAddr

DCD RM Start -Module BaseAddr
DCD RM Init -Module BaseAddr
DCD RM Die -Module BaseAddr
DCD RM Service -Module BaseAddr
DCD RM Title -Module BaseAddr
DCD RM HelpStr -Module BaseAddr
DCD RM HC Table -Module BaseAddr

B S e

Example

Writing relocatable modules in assembler

e T W

This product is supplied with the source for an example relocatable module that
provides an extra soft screen mode: Mode 63. This has to be done via service call
handling, and to be useful must be persistent, so providing a typical use of
relocatable modules.

There are two source files held in AcornC_C++.Examples.AsmModule.s

e The ModeExHdr file produces the module header, and may be useful for you
to copy and edit to form headers for your own modules.

@ The other file, ModeExBody, is the source for the main module body,

To build the module, use ObjAsm to assemble the source. Then link the resultant
object files using Link, remembering first to set the Module option on its Setup
dialogue box.

The module is specific to VIDC1 and VIDCla, and so will not work on Acorn
computers that are fitted with later versions of VIDC — such as the Risc PC.

173

174

R e S O O R O S R R R R R e

14

Interworking assembler with C

e T o e O e e

nterworking assembly language and C — writing programs with both assembly
language and C parts — requires using both ObjAsm and C/C++.

Interworking assembly language and C allows you to construct top quality RISC OS
applications. Using this technique you can take advantage of many of the strong
points of both languages. Writing most of the bulk of your application in C allows
you to take advantage of the portability of C, the maintainability of a high level
language, and the power of the C libraries and language. Writing critical portions of
code in assembler allows you to take advantage of all the speed of the Archimedes
and all the features of the machine (eg the complete floating point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Call Standard (APCS). This is a contract between two
procedures, one calling the other. The called procedure needs to know which ARM
and floating point registers it can freely change without restoring them before
returning, and the caller needs to know which registers it can rely on not being
corrupted over a procedure call. Additionally both procedures need to know which
registers contain input arguments and return arguments, and the arrangement of
the stack has to follow a pattern that debuggers, etc. can understand. For the
specification of the APCS, see the appendix ARM procedure call standard on page 249
of the accompanying Desktop Tools guide

Examples
The following examples are provided to demonstrate how to write programs
combining assembly language and C.
PrintLib

The directory AcornC_C++.Examples.PrintLib.s contains three source
files from which you can build a library: PrintStr, PrintHex and PrintDble.
These are the assembly language sources for three screen printing routines:
print string print hexand print double. These respectively print null
terminated strings, integers in hexadecimal, and double precision floating point
numbers in scientific format.

175

Examples

O T e i

Fach routine is written to obey the APCS, so it can be called from assembler, C, or
any other high level language obeying the APCS. The sources for PrintLib illustrate
several aspects of the APCS, such as the distinction between leaf and non-leaf
procedures, and how floating point arguments are passed into a procedure.

Compiling the CTestPrLib example

To show you that you can call the routines in PrintLib from C, we've supplied a
small C program in AcornC_C++.Examples.PrintLib.c.CTestPrLib. To
build this example, you must:

1 Build the PrintLib library; you'll find instructions for this in the section
Assembler example on page 134 of the Desktop Tools guide.

2 Start CC if you've not already got it loaded.

Drag the CTestPrLib file to the CC icon, which will display its Setup
dialogue box with CTestPrLib already entered as the source to compile.

4 Add the full pathname of the PrintLib library to the list of Libraries on the
Setup men.
5 Click on Run to compile and link the program.

6 Save the program to disc.

To run the program, double click on its icon in the directory display to which you
saved it. A standard RISC OS command line output window appears containing
text printed by the assembly language library routines as a result of arguments
passed from C;

rld

hello worl
89HBCDEF
-1.2346E-1
1iﬂ §§E1 1
i.é £h
.B@BBELAB

Press SPACE or click mouse to continue

176

Interworking assembler with C

i

Compiling and linking CTestPrLib in separate stages

If you prefer, you can instead use the Compile only option of CC to compile
CTestPrLib to an object file,

You can then use Link to link this object file with the libraries it uses. As well as the
PrintLib library, it also uses the C library, so you must link three files: the object
code for CTestPrLib, the library built from the PrintLib source, and the C library
stubs held in AcornC_C++.Libraries.clib.o.stubs.

(In the above section Compiling the CTestPrLib example, the C library stubs were linked
in because they were already in the Setup menu's default list of Libraries. |

CStatics

The directory AcornC_C++.Examples.CStatics gives an example of
accessing C static variables from both assembler and C source code. The example
builds to form a relocatable module providing a single * Command: *CStatics.

The files in the directory are as follows:

@ c.CInitistheC sourcecode. It declarestwovariables: extern int varl,
which is provided by and initialised to 0 in s .AsmInit (see below), and
int wvar2 which it initialises as 0. It prints the values of the two variables. It
then calls the routine Asm_Change Vars provided by s .AsmInit (see
below), which changes the values of the two variables. Finally it prints the new
values,

® cmhg.Header is the CMHG description file for the module. hdr.CVars is
an assembler source file that contains a series of macros used by s.AsmInit.
You will find these useful if you too ever need to share static data between
assembler and C.
MakeFile is the make file for the CStatics module.

o is an empty directory used to hold the object files created when making the
CStatics module.

® s.AsmInit isthe assembler source code. It initialises the variable varl to 0
and exports it; it also imports the variable var2. It also provides an APCS
conformant routine Asm_Change Vars which adds 10 to var1 and
subtracts 10 from var2. All this code makes heavy use of the macros in
hdr.CVars.

To build the CStatics module, simply double click on the MakeFile.

177

Examples

T T

When Make has completed, you can see the example in use. Load the resultant
Cstatics module by double clicking on it, then type CStatics at the command
line. You will get this output:

varl = 0
var2 = 0
varl = 10
varl = -10

If you repeat the *Cstatics command you will see the variables change again:

varl = 10
var2 = -10
varl = 20
varl = -20

and so on, every time you repeat the command.,

178

e

Part 4 — Appendixes

179

180

I e

Appendix A: Changes to the assembler

S R R T M e i T T T T R T

his release of the assembler replaces the product Acorn Assembler Release 2. It has
seen the following major changes:

The product has been merged with the C compiler.

ObjAsm has added support for the ARM6, ARM7 and ARM7M versions of the
processor. All new instructions are implemented, and there is also support for
other new features such as big- and little-endian memory systems.

® ObjAsm now accepts instruction mnemonics in lower case; this feature can be
disabled for backward compatibility.

ObjAsm now supports many more options through its Setup menu.

The AAsm tool is no longer supplied, but has been replaced — at least for this
release — by a backward compatible mode.

® The Toolbox has been added to the product, to facilitate the design and coding
of consistent user interfaces for RISC OS desktop applications. See the
accompanying User Interface Toolbox guide.

181

182

O R S T T

T e

Appendlx B: Error messages

e e e e e e e

his appendix lists most of the common error messages that you may get when
using the assembler, and gives an explanation for each one of the

circumstances that may provoke the error.

ADRL can't be used with PC
The destination register of an ADRL opcode cannot be PC

Area directive missing

An attempt has been made to generate code or data before the first AREA
directive.

Area name missing

The name for the area has been omitted from an AREA directive.

Bad alignment boundary
An alignment has been given which is not a power of two.

Bad area attribute or alignment
Unknown attribute or alignment not in the range 2-12.

Bad based number
A digit has been given in a based number which is not less than the base, for
example: 7_8.

Bad exported name
The wording following the EXPORT directive is syntactically not a name.

Bad exported symbol type
The exported symbol is not a program-relative symbol.

Bad expression type
For example, a number was expected but a string was encountered.

Bad floating point constant
The only allowed floating point constantsare 0, 1, 2, 3,5, 10 and 0.5 They must
be written in exactly these forms.

Bad global name
An incorrect character appears in the global name.

Bad hexadecimal number
The & introducing a hexadecimal number is not followed by a valid
hexadecimal digit.

Bad imported name
The wording following the IMPORT directive is syntactically not a name.

183

Error messages

e

184

Bad local label number
A local label number must be in the range 0-99,

Bad local name
An incorrect character appears in the local name.

Bad macro parameter default value

Bad opcode symbol
A symbol has been encountered in the opcode field which is not a directive
and is syntactically not a label,

Bad operand type
For example, a logical value was supplied where a string was required.

Bad operator
The name between colons is not an operator name.

Bad or unknown attribute
Faulty attribute on an IMPORT directive.

Bad register list symbol
An expression used as a register set definition (eg in LDM or STM) was not
understood or of the wrong type.

Bad register name symbol
A register name is wrong, Note that all register names must be defined using
the RN directive.

Bad register range
A register range from a higher to a lower register has been given, for example,
R4-R2 has been typed.

Bad rotator
The rotator value supplied must be even and in the range 0-30.

Bad shift name
Syntax error in shift name.

Bad string escape sequence
A C style escape character sequence (beginning with ') within a string was
incorrect,

Bad symbol
Syntax error in a symbol name.
Bad symbol type

This will occur after a # or * directive and means that the symbol being defined
has already been assumed to be of a type which cannot be defined in this way.

Branch offset out of range
The destination of a branch is not within the ARM address space.

Error messages

B O A T e T T i e e

Code generated in data area
An opcode has been found in an area which is not a code area.

Coprocessor number out of range
Coprocessor operation out of range
Coprocessor register number out of range

Data transfer offset out of range
The immediate value in a data transfer opcode must be in the range
-4095 s e s +4095

Decimal overflow
The number exceeds 32 bits.

Division by zero
Entry address already set
This is the second or subsequent ENTRY directive.

Error in macro parameters
The macro parameters do not match the prototype statement in some way.

Error on code file
An error occurred while writing the output file

External area relocatable symbol used
A symbol which is an address in another area has been used in a non-trivial
expression,

Externals not valid in expressions

An imported symbol has been used in a non-trivial expression.
Floating point register number out of range
Floating point overflow

Floating point number not found

Global name already exists
This name has already been used in some other context

Hexadecimal overflow
The number exceeds 32 bits

Illegal combination of code and zero initialised

An obiect file area cannot be declared both to be code and zero initialised
data.

Illegal label parameter start in macro prototype
Illegal line start should be blank

A label has been found at the start of a line with a directive which cannot be
labelled.

185

Error messages

T T

186

Immediate value out of range
An immediate value in a data processing instruction cannot be obtained by
rotating an 8-bit value by an even amount.

Imported name already exists
The name has already been defined or used for something else.

Incorrect routine name
The optional name following a branch to a local label or on a local label
definition does not match the routine's name.

Invalid line start
Aline may only start with a letter character (the first letter of a label), a digit
(the first character of a local label), a semi-colon or a space.

Invalid operand to branch instruction

Label missing from line start
The absence of a label where one is required; for example, in the * directive

Local name already exists
Alocal name has been defined more than once,

Locals not allowed outside macros
A local variable has been defined in the main body of the source file

MEND not allowed within conditionals
A MEND has been found amonegst | | | or WHILE/WEND directives.

Missing close bracket
A missing close bracket or too many opening brackets,

Missing close quote
No closing quote at the end of a string constant.

Missing close square bracket
A | is absent.

Missing comma
Syntax error due to missing comma,

Missing hash
The hash (#) preceding an immediate value has been forgotten,

Missing open bracket
A missing open bracket or too many closing brackets.

Missing open square bracket

Multiply or incompatibly defined symbol
A symbol has been defined more than once.

Multiply destination equals first source

s

Error messages

S A T T e T R e

No current macro expansion
A MEND, MEXIT or local variable has been encountered but there is no
corresponding MACRO.

Non-zero data within uninitialised area

Numeric overflow
The number exceeds 32 bits.

Register occurs multiply in LDM/STM list

Register symbol already defined
A register symbol has been defined more than once,

Register value out of range

Register values must be in the range 0-15.

Shift option out of range

The range permitted is 0-31, 1-32 or 1-31 depending on the shift type.

String overflow
Concatenation has produced a string of more than 256 characters.

String too short for operation
An attempt has been made to manipulate a string using :LEFT. or :RIGHT:
which has insufficient characters in it.

Structure mismatch
Mismatch of | with | or |, or WEND and WHILE.

Substituted line too long
During variable and macro parameter substitution the line length has
exceeded 256 characters

Symbol missing
An attempt has been made to reference the length attribute of a symbol but
the symbol was omitted or the name found was not recognised as a symbol.

Syntax error following directive
An operand has been provided to a directive which cannot take one, for
example: the ' directive.

Syntax error following label
A label can only be followed by spaces, a semi-colon or the end-of-line
symbol.

Syntax error following local label definition
A space, comment, or end-of-line did not immediately follow the local label

Too late to define symbol as register list
A register list was defined for a symbol already used for another purpose.

Too late to ban floating point

187

Error messages

=W 5 F 5 = 3 8 = W = = S R e SR EE EEEE

® Too late to set origin now
The ORG must be set before the Assembler generates code,

® Too many actual parameters
A macro call is trying to pass too many parameters.
® Translate not allowed in pre-indexed form
The translate option may not be specified in pre-indexed forms of LDR and
STR.
Unable to close code file
Unable to open code file

Undefined exported symbol
The symbol exported is undefined.

® Undefined symbol
A symbol has not been given a value.

® Unexpected characters at end of line
The line is syntactically complete, but more information is present, The
semi-colon prefixing comments may have been omitted.

® Unexpected operand
An operand has been found where a binary operator was expected.

® Unexpected operator
A non-unary operator has been found where an operand was expected.

® Unexpected unary operator
A unary operator has been found where a binary operator was expected.

® Unknown opcode
A name in the opcode field has been found which is not an opcode, a directive
nor a macro.

® Unknown operand
An operand in the bracketed format {PC} {VAR] [OPT] [TRUE)} [FALSE} is not of
the correct form.

® Unknown or wrong type of global/local symbol
Type mismatch, for example, attempting to set or reset the value of a local or
global symbol as logical, where it is a string variable,

@ Unknown shift name
Not one of the six legal shift mnemonics.

188

R R T S R T

Appendix C: Example assembler
fragments

S R R T T T e o

he following example assembly language fragments show ways in which the

basic ARM instructions can combine to give efficient code. None of the
techniques illustrated save a great deal of execution time (although they all save
some), mostly they just save code.

Note that, when optimising code for execution speed, consideration to different
hardware bases should be given. Some changes which optimise speed on one
machine may slow the code on another. An example is unrolling loops (eg divide
loops) which speeds execution on an ARM2, but can slow execution on an ARM3,
which has a cache.

Using the conditional instructions

Using conditionals for logical OR

CMP Rn, #p ; IF Rn=p OR Rm=g THEN GOTO Label
BEQ Label
CMP Rm, #q
BEQ Label

can be replaced by:

CMP Rn, #p
CMPNE Rm, #q ; If condition not satisfied try
BEQ Label ; another test.

Absolute value

TEQ Rn, #0 ; Test sign
RSBMI Rn,Rn,#0 ;j and 2's complement if necessary.

Combining discrete and range tests

TEQ Rec,#127 ; discrete test
CMPNE Ro,#" "-1 ; range test
MOVLS Re,#"." ; IF Re<#" " OR Rc=CHRS$127 THEN Rc:="."

189

Pseudo-random binary sequence generator

R N W WA T T N N W e e e

Division and remainder

: Enter with dividend in Ra, divisor in Rb.
; Divisor must not be zero.

MOV Rd,Rb + Put the divisor in Rd.
CMP Rd,Ra,L5R #1 ; Then double it until
Divl MOVLS Rd,Rd,L5L #1 ; 2 * Rd > divisor.
CMP Rd,Ra,LSR #1
BLS Divl
MOV Rc,#0 ; Initialise the guotient
Div2 CMP Ra,Rd ; Can we subtract Rd?
SUBCS Ra,Ra,Rd ; If we can, do so
ADC Re,Re, Re ; Double quotient and add new bit
MOV Rd,Rd,LSR #1 : Halve Rd.
CMP Rd,Rb ; And loop until we've gone
BHS Divz2 ; past the original divisor,

: Mow Ra holds remainder, Rb holds original divisor,
; Rc holds gquotient and Rd holds junk.

Pseudo-random binary sequence generator

It is often necessary to generate (pseudo-) random numbers, and the most efficient
algorithms are based on shift generators with a feedback rather like a cyclic
redundancy check generator. Unfortunately, the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (that is, 232—1 cycles
before repetition). A 33 bit shift generator with taps at bits 20 and 33 is required.

The basic algorithm is:

® new bit .= bit 33 EOR bit 20

@ shift left the 33 bit number

@ pulin new bit at the bottom

® Repeat for all the 32 new bits needed.
All this can be done in five S cycles:

;1 Enter with seed in Ra (32 bits),Rb (1 bit in Rb 1lsb)

; Uses Rc
TST Rb,Rb,LSh #1 ; top bit into carry
MOVS Rec,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 + (involved!)
EOR Ra,Rc,Rec, LSR#20 ; (similarly involwved!)

: New seed in Ra, Rb as before

190

Example assembler fragments

SRR e, i e R R B o T T

Multiplication by a constant

Multiplication by 2" (1,2,4,8,16,32...)

MOV Ra,Ra,LSL #n;

Multiplication by 2"*1 (3,5,9,17...)

ADD Ra,Ra,Ra,LSL #n.

Multiplication by 2™ (3,7,15...)

RSB Ra,Ra,Ra,L5L #n

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 2
MOV Ra,Ra,LSL #1 ; and then by 2.

Multiply by 10 and add in extra number

AD Ra,Ra,Ra,LSL #2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL #1 i Multiply by 2 and add in next digit

General recursive method for Rb := RaxC, C a constant
If C even, say C = 2"xD, D odd:

D=1 : MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

IfCMOD 4 =1,say C=2"xD+1, D odd, n>1;

b=1 = ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n.

IFCMOD 4 =73, say C=2"xD-1, D odd, n>1:

D=1 : RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n.

191

Loading a word from an unknown alignment

This is not quite optimal, but close. An example of its non-optimal use is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL #2 ;1 Multiply by 3
RSB Rb,Ra,Rb,L5L #2 ; Multiply by 4%3-1 = 11
ADD Rb,Ra,Rb,LSL #2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL #3 i Multiply by 9
ADD Rb,Rb,Rb,LSL #2 ; Multiply by 5*3% = 45

Loading a word from an unknown alignment

There is no instruction to load a word from an unknown alignment. To do this
requires some code (which can be a macro) along the following lines:
; Enter with 32-bit address in Ra

; Uses Rb, Rc; result in Rd
; Note d must be less than c

BIC Eb,Ra,#3 ; Get word-aligned address
LDMIA Rb, {Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL #3 i ...now in bits and test if aligned
MOVHE Rd,Rd,LSE Rb ; If not aligned, produce bottom
;i of result word
RSENE Rb,Rb,#32 ; Get other shift amount
ORENE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

Sign/zero extension of a half word

MOV Ra,Ra,L5L #16 ;i Move to top,
MOV Ra,Ra,LS8R #16 ; and back to bottom
: Use ASR to get sign extended version

Return setting condition codes

CFLAG * &20000000
BICS PC,R14,#CFLAG ; Returns clearing C flag
; from link register
ORRCCS PC,R14,#CFLAG : Conditionally returns setting C flag

This code should not be used except in user mode, since it will reset the interrupt
mode to the state which existed when the R14 was set up. This rule generally
applies to non-user mode programming.

192

Example assembler fragments

Full multiply

For example in supervisor mode:
MOV PC,R14

is safer than
MOVS PC,R14

However, note that MOVS PC,R14 is required by the ARM Procedure Call
Standard, used by code compiled from the high level language C. Such code, of
course, runs in user mode.

The ARM's multiply instruction multiplies two 32 bit numbers together and
produces the least significant 32 bits of the result. These 32 bits are the same
regardless of whether the numbers are signed or unsigned.

To produce the full 64 bits of a product of two unsigned 32 bit numbers, the
following code can be used:

; Enter with two unsigned numbers in Ra and Rb.

MOVS Rd,Ra,LSR #16 ; Rd is ms 16 bits of Ra

BIC Ra,Ra,Rd,LSL #16 ; Ra is 1ls 16 bits

MoV Re,Rb,LSR #16 ; Re is ms 16 bits of Rb

BIC Eb,Rb,Re,LSL #16 ; Rb is 1s 16 bits

MUL Rc,RA,Rb ; Low partial product

MUL Rb,Rd,Rb ; First middle partial product
MUL Ra,Re, Ra ; Second middle partial product
MULNE Rd,Re,Rd ; High partial product - NE

; condition reduces time taken
: 1if Rd is zero

ADDS Ra,Ra,Rb ; Add middle partial products -
; could not use MLA because we
; need carry

ADDCS Rd,Rd, #&10000 ; Add carry into high partial
; product

ADDS Rc,Rc,Ra,LSL #16 ; Add middle partial product

ADC Rd,Rd,Ra,LSE #16 ; sum into low and high words
; of result

; Now Rc holds the low word of the product, Rd its high word,
: and Ra, Rb and Re hold junk.

Of course, the ARM7M core provides the Multiply Long class of instructions to
perform a 64 bit signed or unsigned multiply or multiply-accumulate (see Multiply
Long and Multiply-Accumulate Long (UMULL, SMULL, UMLAL, SMLAL) on page 81).

193

194

S e R A N T R R B e e O e e S e

Appendix D: Warnings on the use of ARM
assembler

e o e

he ARM processor family uses Reduced Instruction Set (RISC) techniques to

maximise performance; as such, the instruction set allows some instructions
and code sequences Lo be constructed that will give rise to unexpected (and
potentially erroneous) results. These cases must be avoided by all machine code
writers and generators if correct program operation across the whole range of ARM
processors is to be obtained.

In order to be upwards compatible with future versions of the ARM processor
family never use any of the undefined instruction formats:

® those shown in the section Undefined instructions on page 109, which the
processor traps;

e those which are not shown in the manual and which don’t trap (for example, a
Multiply instruction where bit 5 or 6 of the instruction is set).

In addition the condition code 1111 (which was given the mnemonic ‘NV', i.e.
never) should not be used. We recommend that you use the instruction 'MOV
RO,RO" as a general purpose no-op.

This appendix lists the instructions and code sequences to be avoided. It is
strongly recommended that you take the time to familiarise yourself with these
cases because some will only fail under particular circumstances which may not
arise during testing.

For more details on the ARM chip and its instruction set see the chapters The ARM
CPU on page 29 and CPU instruction set on page 53, and the datasheets for the
different versions of the ARM chip.

195

Restrictions to the ARM instruction set

£

E : o e O e

Restrictions to the ARM instruction set

There are three main reasons for restricting the use of certain parts of the
instruction set:

196

Dangerous instructions

Such instructions can cause a program to fail unexpectedly, for example:
LDM R15,R1ist

uses PC+PSR as the base and so can cause an unexpected address exception.

Useless instructions

It is better to reserve the instruction space occupied by existing 'useless’
instructions for instruction expansion in future processors, For example:

MUL R15,Rm,Rs
only serves to scramble the PSR,
This category also includes ineffective instructions, such as a PC relative
LDC/STC with writeback; the PC cannot be written back in these instructions,
so the writeback bit is ineffective (and an attempt to use it should be flagged
as an error).
Instructions with undesirable side-effects
It is hard to guarantee the side-effects of instructions across different
processors, If, for example, the following is used:

ILDR Rd, [R15,#expression]!
the PC writeback will produce different results on different types of processor.

Warnings on the use of ARM assembler

T T T D I TR e S

Instructions and code sequences to avoid

The instructions and code sequences are split into a number of categories. Each
category starts with an indication of which of the two main ARM variants (ARM2,
ARM3) it applies to, and is followed by a recommendation or warning. The text
then goes on to explain the conditions in more detail and to supply examples
where appropriate.

Unless a program is being targeted specifically for a single version of the ARM
processor family, all of these recommendations should be adhered to.

TSTP/TEQP/CMPP/CMNP: Changing mode
Applicability: ARM?2
When the processor's mode is changed by altering the mode bits in the PSR
using a data processing operation, care must be taken not to access a banked

register (R8-R14) in the following instruction. Accesses to the unbanked
registers (RO-R7, R15] are safe.

The following instructions are affected, but note that mode changes can only be
made when the processor is in a non-user mode:

TSTP Rn,Op2
TEQP Rn,Op2
CMPP Rn,Op2
CMNP Rn,Op2

These are the only operations that change all the bits in the PSR (including the
mode bits) without affecting the PC (thereby forcing a pipeline refill during which
time the register bank select logic settles).

The following examples assume the processor starts in Supervisor mode:

a) TEQP PC,#0
MOV RO,RO Safe: NOP added between mode change and
ADD RO,R1,R13 usr access to a banked register (R13_usr)

b) TEQP PC,#0
ADD RO,R1,R2 Safe: No access made to a banked register

c) TEQP PC,#0
ADD RO,R1,R13 usr Fails: Data not read from Register R13_usr!

The safest default is always to add a NOP (e.g. MOV RO,R0) after a mode changing
instruction; this will guarantee correct operation regardless of the code sequence
following it.

197

Instructions and code sequences to avoid

e e om0 e e e e e e I e e e e e e e e e e

198

LDM/STM: Forcing transfer of the user bank (Part 1)

Applicability: ARM2, ARM3
Do not use writeback when forcing user bank transfer in LDM/STM,

For STM instructions the S bit is redundant as the PSR is always stored with the PC
whenever R15 is in the transfer list. In user mode programs the S bit is ignored, but
in other modes it has a second interpretation; S=1 is used to force transfers to take
values from the user register bank instead of from the current register bank. This is
useful for saving the user state on process switches.

Similarly, in LDM instructions the S bit is redundant if R15 is not in the transfer list.
In user mode programs, the S bit is ignored, but in non-user mode programs where
R15 is not in the transfer list, S=1 is used to force loaded values to go to the user
registers instead of the current register bank.

In both cases where the processor is in a non-user mode and transfer to or from the
user bank is forced by setting the S bit, writeback of the base will also be to the
user bank though the base will be fetched from the current bank. Therefore don't
use writeback when forcing user bank transfer in LDM/STM.

The following examples assume the processor to be in a non-user mode and
R1list nottoinclude R15:

STMxx Rn!,Rlist Safe: Storing non-user registers with write
back to the non-user base register

LDMxx Rn!,Rlist Safe: Loading non-user registers with write
back to the non-user base register

STMxx Rn,R1ist” Safe: Storing user registers, but no base
write-back
STMxx Rn!,Rlist” Fails: Base fetched from non-user register,

but written back into user register

LDMxx Rn!,RI1ist” Fails: Base fetched from non-user register,
but written back into user register

Warnings on the use of ARM assembler

T e e e e e A e e e e e e - o S

LDM: Forcing transfer of the user bank (Part 2)
Applicability: ARM2, ARM3
When loading user bank registers with an LDM in a non-user mode, care must

be taken not to access a banked register (R8-R14) in the following instruction.
Accesses to the unbanked registers (R0O-R7 R15) are safe.

Because the register bank switches from user mode to non-user mode during the
first cycle of the instruction following an LDM Rn,R1ist”, an attempt to access a
banked register in that cycle may cause the wrong register to be accessed.

The following examples assume the processor to be in a non-user mode and
Rlist not to include R15:

LDM Rn Rlist”

ADD RO,R1,R2 Safe: Access to unbanked registers after
LDMA

LDM Rn,R1ist”

MOV RO,RO Safe: NOP inserted before banked register

ADD RO,R1,R13 svec used following an LDM”

IDM Rn,Rlist”

ADD RO,R1,R13 svc Fails: Accessing a banked register
immediately after an LDM” returns the
wrong data

ADR R14 svec, saveblock

LDMIA R14 svc, {RO - R14 usr}”

LDR R14 _svc, [R14_svc,#15%4] Fails: Banked base register

MOVS PC, R1l4_svc (R14_svc) used immediately
after the LDM#

ADR R14 _svec, saveblock
LDMIA R14 svc, {RO - R14 usr}”

MOV RO, RO Safe: NOP inserted before
LDR R14 _svc, [R14 _svc,#15%4] banked register
MOVS PC, R14_svc (R14_svc) used

Note: The ARM2 and ARM3 processors usually give the expected result, but cannot
be guaranteed to do so under all circumstances, therefore this code sequence
should be avoided in future.

199

Instructions and code sequences to avoid

L S = T R i T

200

SWi/Undefined Instruction trap interaction

Applicability: ARM2
Care must be taken when writing an undefined instruction handler to allow for

an unexpected call from a SWI instruction. The erronecus SWI call should be
intercepted and redirected to the software interrupt handler.

The implementation of the CDP instruction on ARM2 may cause — under certain
circumstances — a Software Interrupt (SWI) to take the Undefined Instruction trap if
the SWI was the next instruction after the CDP. For example:

SIN FO
SWI &11 Fails: ARM?2 may take the undefined instruction
trap instead of software interrupt trap.

All Undefined Instruction handler code should check the failed instruction to see if
it is @ SWI, and if so pass it over to the software interrupt handler by branching to
the SWI hardware vector at address 8.

Undefined instruction/Prefetch abort trap interaction

Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined instruction is fetched from the last word of a page, where the
next page is absent from memory, the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
will cause a prefetch abort trap. One might expect the undefined instruction trap to
be taken first, then the return to the succeeding code will cause the abort trap. In
fact the prefetch abort has a higher priority than the undefined instruction trap, so
the prefetch abort handler is entered before the undefined instruction trap,
indicating a fault at the address of the undefined instruction (which is in a page
which is actually present). A normal return from the prefetch abort handler (after
loading the absent page) will cause the undefined instruction to execute and take
the trap correctly. However the indicated page is already present, so the prefetch
abort handler may simply return control, causing an infinite loop to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault is in
a page which is actually present, and if so it should suspect the above condition
and pass control to the undefined instruction handler. This will restore the
expected sequential nature of the execution sequence. A normal return from the
undefined instruction handler will cause the next instruction to be fetched (which
will abort], the prefetch abort handler will be re-entered (with an address pointing
to the absent page), and execution can proceed normally.

Warnings on the use of ARM assembler

S s e e

Single instructions to avoid

Applicability: ARM2, ARM3

The following single instructions and code sequences should be avoided in
writing any ARM code.

Any instruction that uses the 1111 condition code

Avoid using the condition code 1111 (which was given the mnemonic 'NV', i.e.
never):

opcodeNV ...
i.e. any operation where «cond» = NV

By avoiding the use of the ‘NV' condition code, 2?8 instructions become free for
future expansion.

Note: It is recommended that the instruction MOV RO, RO be used as a general
purpose NOP.

Data processing
Avoid using R15 in the Rs position of a data processing instruction;

MOV | MVN«cond» «S» Rd,Rm,shiftname R15

CMP |CMN | TEQ | TST«cond» «P» Rn,Rm,shiftname R15

ADC |ADD|SBC. .. |EOR«cond»«S» Rd,Rn,shiftname R15
Shifting a register by an amount dependent upon the code position should be
avoided.
Multiply and multiply-accumulate

Do not specify R15 as the destination register as only the PSR will be affected by
the result of the operation;

MUL«cond»«S» R15,Rm,Rs
MLA«cond» «S» R15,Rm,Rs,Rn

Do not use the same register in the Rd and Rm positions, as the result of the
operation will be incorrect:

MUL«cond»«S» Rd,Rd,Rs
MLA«cond» «S» Rd,Rd,Rs

201

Instructions and code sequences to avoid

o T TR T O

202

Single data transfer

Do not use a PC relative load or store with base writeback as the effects may vary in
future processors:

LDR | STR«cond» «B»«T» Rd, [R15,#expression]!
LDR|STR«cond» «Bu«T» Rd, [R15, «-»Rm«,shiftns]!

LDR|STR«cond» «Bu«T» Rd, [R15],#expression
LDR|STR«cond» «Buy«T» Rd, [R15],«-»Rm«,shiftn

Note: It is safe to use pre-indexed PC relative loads and stores without base
writeback.

Avoid using R15 as the register offset (Rm) in single data transfers as the value
used will be PC+PSR which can lead to address exceptions:

LDR|STRHCOnd»«B»«Tn Rd, [Rn, «=»R15«,shiftn]u«!ln
LDR | STR«cond» «B»«T» Rd, [Rn],«-»R15«,shiftn»

A byte load or store operation on R15 must not be specified, as R15 contains the
PC, and should always be treated as a 32 bit quantity:

LDR|STR«COHd»BﬂT» R15, address
A post-indexed LDRISTR where Rm=Rn must not be used (this instruction is very

difficult for the abort handler to unwind when late aborts are configured — which do
not prevent base writeback):

LDR|STR«cond» «B» «T» Rd,[Rn], «—»Rn«,shifty

Do not use the same register in the Rd and Rm positions of an LDR which specifies
(or implies) base writeback; such an instruction is ambiguous, as it is not clear
whether the end value in the register should be the loaded data or the updated
base:

LDR«cond» «B»«T» Rn, [Rn,#expression]!
LDR«cond» «B»«T» Rn, [Rn, «—»Rme ,shift»]!

LDR«cond»«B»«T» Rn, [Rn],#expression
LDR«cond» «B»«T» Rn,[Rn],«—-nRm«,shiftnr

T

Warnings on the use of ARM assembler

Block data transfer

Do not specify base writeback when forcing user mode block data transfer as the
writeback may target the wrong register:

STM«cond»<FD|ED. . .
LDM«cond»<FD|ED. ..

DB> Rn!,Rlist"
DB> Rn!,R1ist”

where RI1ist does not include R15.
Note: The instruction:

LDM«cond»<FD|ED. .. |DB> Rn!,<Rlist,R15>"

does not force user mode data transfer, and can be used safely.

Do not perform a PC relative block data transfer, as the PC+PSR is used to form the
base address which can lead to address exceptions:

LDM | STM«cond»<FD |ED. ..

DB> R15«!»,R1ist«”»

Single data swap

Do not perform a PC relative swap as its behaviour may change in the future:
SWP«cond»«B» Rd,Rm,[R15]

Avoid specifying R15 as the source or destination register:

SWP«cond»«B» R15,Rm, [Rn]
SWP«cond»«B» Rd,R15,[Rn]

Coprocessor data transfers

When performing a PC relative coprocessor data transfer, writeback to R15 is
prevented so the W bit should not be set:

LDC|STCu«cond» «L» CP#,CRd, [R15]!
LDC|STC«cond»«L» CP#,CRd, [R15,#expression]!

LDC |STC«cond» «L» CP#,CRd, [R15 |#expression!

203

Instructions and code sequences to avoid

Undefined instructions

ARM2 has two undefined instructions, and ARM?3 has only one (the other ARM?2
undefined instruction has been defined as the Single data swap operation).

Undefined instructions should not be used in programs, as they may be defined as
a new operation in future ARM variants.

Register access after an in-line mode change

Care must be taken not to access a banked register (R8-R14) in the cycle following
an in-line mode change. Thus the following code sequences should be avoided:

I TSTP|TEQP|CMPP|CMNP«cond» Rn,Op2

2 any instruction that uses R8-R14 in its first cycle.

Register access after an LDM that forces user mode data transfer

The banked registers (R&R14) should not be accessed in the cycle immediately
after an LDM that forces user mode data transfer. Thus the following code
sequence should be avoided:

1 LDM«cond»<FD|ED...|DB> Rn,Rlist”
where R1ist does not include R15

2 any instruction that uses R8-R14 in its first cycle.

Other points to note

This section highlights some obscure cases of ARM operation which should be
borne in mind when writing code.

Use of R15

Applicability: ARM2, ARM3
Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact
usage of R15.

Full details of the value derived from or written into R15+PSR for each instruction
class is given in the chapter CPU instruction set on page 53. Care must be taken when
using R15 because small changes in the instruction can yield significantly different
results. For example, consider data operations of the type:

opcode«cond» «S» Rd,Rn,Rm
or opcode«cond» «S» Rd,Rn,Rm,shiftname Rs

204

Warnings on the use of ARM assembler

® When R15 is used in the Rm position, it will give the value of the PC together
with the PSR flags.

® When R15 is used in the Rn or Rs positions, it will give the value of the PC
without the PSR flags (PSR bits replaced by zeros).

MOV RO, #0
ORR R1,R0O,R15 RI:=PC+PSR (bits 31:26,1:0 reflect PSR flags)
ORR R2,R15,R0 +R2:=PC (bits 31:26,1:0 set to zero)

Note: The relevant instruction description in the chapter CPU instruction set on
page 53 should be consulted for full details of the behaviour of R15.

STM: Inclusion of the base in the register list

Applicability: ARM2, ARM3

Warning: In the case of a STM with writeback that includes the base register in
the register list, the value of the base register stored depends upon its
position in the register list.

During an STM, the first register is written out at the start of the second cycle of the
instruction. When writeback is specified, the base is written back at the end of the
second cycle. An STM which includes storing the base, with the base as the first
register to be stored, will therefore store the unchanged value, whereas with the
base second or later in the transfer order, it will store the modified value.

For example:

MOV R5,#&1000
STMIA R5!, {R5-R6} ; Stores value of R5=&1000

MOV R5,#&1000
STMIA R5!, {R4-R5} . Stores value of R5=&1008

MUL/MLA: Register restrictions
Applicability: ARM2, ARM3

Given MUL Rd,Rm,Rs
or MLA Rd,Rm,Rs,Rn
Then Rd & Rm must be different registers

Rd must not be R15

Due to the way the Booth's algorithm has been implemented, certain
combinations of operand registers should be avoided. (The assembler will issue a
warning if these restrictions are overlooked)

205

Instructions and code sequences to avoid

o

206

o

—

The destination register (Rd) should not be the same as the Rm operand register, as
Rd is used to hold intermediate values and Rm is used repeatedly during the
multiply. A MUL will give a zero result if Rm=Rd, and a MLA will give a meaningless
result.

The destination register (Rd) should also not be R15. R15 is protected from
modification by these instructions, so the instruction will have no effect, except
that it will put meaningless values in the PSR flags if the S bit is set,

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

LDM/STM: Address Exceptions

Applicability: ARM2, ARM3

Warning: lllegal addresses formed during a LDM or STM operation will not
cause an address exception.

Only the address of the first transfer of a LDM or STM is checked for an address
exception; if subsequent addresses over-flow or under-flow into illegal address
space they will be truncated to 26 bits but will not cause an address exception trap.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

MoV RO,#&04000000 ; RO=&04000000
STMIA RO, {R1-R2} ; Address exception reported
(base address illegal)

MOV RO,#&04000000
SUB RO,RO,#4 ; RO=E&03FFFFFC
STMIA RO, {R1-R2} ; No address exception reported
(base address legal)
. code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
which the processor is attached; in some cases, the wraparound may be detected
and the instruction aborted.

Warnings on the use of ARM assembler

S e : W e

LDC/STC: Address Exceptions

Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDC or STC operation will not
cause an address exception (affects LDF/STF),

The coprocessor data transfer operations act like STM and LDM with the processor
generating the addresses and the coprocessor supplying/reading the data. As with
LDM/STM, only the address of the first transfer of a LDC or STC is checked for an
address exception; if subsequent addresses over-flow or under-flow into illegal
address space they will be truncated to 26 bits but will not cause an address
exception trap,

Note that the floating point LDF/STF instructions are forms of LDC and STC.

The following examples assume the processor is in a non-user mode and MEMC is
being accessed:

MOV RO,#&04000000 ; RO=&04000000
STC CP1,CRO,[RO] . Address exception reported
(base address illegal)

MOV RO,#&04000000
SUB RO,RO,#4 - RO=E&03FFFFFC
STFD FO0,[RO] ; No address exception reported
(base address legal)
. code will overwrite data at address &00000000

Note: The exact behaviour of the system depends upon the memory manager to
which the processor is attached. in some cases, the wraparound may be detected
and the instruction aborted.

LDC: Data transfers to a coprocessor fetch more data than expected

Applicability: ARM3
Data to be transferred to a coprocessor with the LDC instruction should never
be placed in the last word of an addressable chunk of memory, nor in the word
of memory immediately preceding a read-sensitive memory location.

Due to the pipelining introduced into the ARM3 coprocessor interface, an LDC
operation will cause one extra word of data to be fetched from the internal cache or
external memory by ARM3 and then discarded; if the extra data is fetched from an
area of external memory marked as cacheable, a whole line of data will be fetched
and placed in the cache,

207

Static ARM problems

R T e e e D T O e

A particular case in point is that an LDC whose data ends at the last word of a
memory page will load and then discard the first word (and hence the first cache
line) of the next page. A minor effect of this is that it may occasionally cause an
unnecessary page swap in a virtual memory system. The major effect of it is that
(whether in a virtual memory system or not), the data for an LDC should never be
placed in the last word of an addressable chunk of memory: the LDC will attempt
to read the immediately following non-existent location and thus produce a
memory fault.

The following example assumes the processor is in a non-user mode, FPU
hardware is attached and MEMC is being accessed:

MOV R13,#&03000000 ; RI3=Address of I/O space
STFD FO,[R13,#-8]! ;Store FP register 0 at top of physical memory
(two words of data transferred)
LDFD F1,[R13],#8 . Load F.P. register | from top of physical
. memory, but three words of data are
. transferred, and the third access will read
from 1/0 space which may be read sensitive

Static ARM problems

The static ARM is a variant of the ARM processor designed for low power
consumption, that is built using static CMOS technology. (The difference between
it and the standard ARM is similar to that between SRAM and DRAM)

The static ARM exhibits different behaviour to ARM2 and ARM3 when executing a
PC relative LDR with base writeback. This class of instruction has very limited
application, so the discrepancy should not be a problem, but if you wish to use any
of the following instructions in your code you are advised to contact Acorn
Computers.

LDR Rd, [PC,#expression]!
LDR Rd, [PC],#expression
LDR Rd, [PC, {-}Rm{,shift}]!
LDR Rd, [PC], {-}Rm{,shift}

Note: A PC relative LDR without writeback works exactly as expected.

Provided that this instruction class is unused, it is likely that writeback to the PC
on LDR and STR will be disabled completely in the future. The fewer incidental
ways there are to modify the PC the better.

208

Warnings on the use of ARM assembler

R R R R R D R e e e D I T e R e D B e e e

Unexpected Static ARM2 behaviour when executing a PC relative LDR with
writeback

The instructions affected are:-
@ IDR Rd, [PC,#expression]!
® LDR Rd,[PC],#expression

Case |: LDR Rd,|PC, #expression]!

Expected result: Rd < [PC+8+expression)
PC = PCH+8+expression
...50 execution continues from PC+8+expression

Actual ARM?2 result: Rd < Rd {no change)
PC < PC+8+expression+4
...S0 execution continues from PC+12+expression

Case 2: LDR Rd,[PC],#expression

Expected result; Rd < (PC+8)
PC < PC+8+expression
..50 execution continues from PC+8+expression

Actual ARM?2 result; Rd < Rd {no change)
PC <= PC+8+expression+4
..s0 execution continues from PC+12+expression

209

210

s e e o e

Appendix E: Support for AAsm source

AASm was an alternative variant of the assembler supplied with previous
releases of this product. It has been removed from this product, but to ease
porting source code written for AAsm, some limited support has been added to
ObjAsm. This support for AAsm may be removed in future releases of Acorn
Assembler.

To enable this support you must pass the new ~ABSolute option to ObjAsm.
There is no option on the Setup menu directly corresponding to this option; the
best way to pass the option from the desktop is to include it in the Setup menu's
Others option (see Specifying other command line options on page 18).

The -ABSolute option

The new -ABSolute option makes ObjAsm accept AAsm source code. This option
is provided to simplify the use of code originally developed using AAsm. Unlike
AAsm, the output format produced is AOF, as for any ordinary assembly operation,
and this must be linked by the linker as usual, in order to create an absolute image
However, the contents of the AOF file will be marked as having an absolute address
(if either the ORG or LEADR directive is used), and the linker, given suitable
options, can produce an image file equivalent to that previously generated directly
by AAsm. The following changes to normal ObjAsm input syntax apply:

® Thereis an implicit AREA declaration before the start of the source. The
normal rule that there must be an AREA directive in the source before use of
any instruction or data generating statements does not apply. The implicitly
declared area is called ABSS$SBLOCK, and has the new ABS attribute (see Area
atlributes on page 48) implying that it must be loaded at a fixed absolute base
address.

@ The directive LEADR is accepted. (Previously only AAsm implemented this;
ObjAsm did not)

® The ORG directive, if used within the source file, will apply to the implicitly
declared current area.

e The following directives are not recognised (since they were not available with
AAsm), and may be used for any other purpose, in particular as macro names:
AREA, IMPORT, EXPORT, STRONG, ENTRY, KEEP, AOF, AQUT,

This change is important, since ObjAsm recognises directives before it does
Macro names,

211

212

Index

e

Symbols
1142

- 149, 151
140-141
S 147, 160
9% 50,139
* 145.°150
+ 149, 151
o147

£ 150

/= 151

< 151

= 1.5l

= |51

>= [5]

? 149

@ 147

| 153-155
| 153-155
A 140-141
| 153-155

A

AAsm 25, 181, 211
Abort mode see ABT mode
aborts 42-43

see also data aborts and prefetch aborts
ABS 48,49, 136-137, 211
ABSSSBLOCK 211
ABT mode 37, 39, 42, 43
ACS 136-137
ADC 66-73, 114
ADD 66-73, 114, 115
address bus 29, 31, 34, 41

address exceptions 36,37, 41-42 46,86, 94, 167,
206-207

addressing 89-94, 103, 104
ADF 136-137
ADR 15
ADRL 115-116
ALIGN 49, 144
ALU 29, 31,54
an see registers (names)
AND 66-73, 114, 151
AOQF 211
AOQUT 211
APCS 11,24, 145 175,176
AREA 48, 172, 211
AREAs 47-49 144

ISSSSSSS!| 48

|CSScodel 48

attributes 11, 48

code 24,47

data 47

relocatable address constants 48
arithmetic logic unit see ALU
Arithmetic Shift Left see ASL
Arithmetic Shift Right see ASR
ARM

configuration 24

core 31

CPU 29-46

versions 2, 12, 32, 36, 167
ARM Procedure Call Standard see APCS
ARM2 29 32-35 74, 96
ARM250 97
ARM3 29, 32-35 74,97
ARM6 12, 36, 38,97, 167, 181
ARMT 12, 36, 38, 97, 167, 181
ARMTM 12, 36,81, 181, 193
ASL 58

213

Index

SR TR

AsmHello example 21 CMP 35, 66-73, 76, 114, 197
AsmModule example 173 CMPP see CMP
ASN 136-137 CN 62, 145
ASR 60 CNF 137-138
assembly language 27-163 CNFE 137-138
examples 189-193 CODE 48
ASSERT 142 COMDEF 48
ATN 136-137 comments 51
COMMON 48

condition codes 29, 35, 53-54, 189-190, 192-193,

B 195, 201

conditional assembly 15, 153-155

B 63-65 CONFIG 11, 24, 147
barrel shifter 29, 31, 55-56 configurations 36, 37, 41, 167-168
carry in 55 constants 51, 145
carry out 55 immediate 56
BASE 149 conventions 3
BASED Rn 48 coprocessors 30, 44, 62, 100-108, 145
bibliography 3 floating point 62
BIC 66-73, 114 COS 136-137
BL 63-65 CP 62, 145
booleans see constants CPSR 36, 38, 39, 40, 65, 74-77
buttons see application (button name) CStatics example 177-178
C-strings 139

current program status register see CPSR

C

C flag 35, 55,69, 76-77 D
C language 175-178

static variables 177-7? DATA 48, 142
cacheing see ObjAsm (cacheing) data aborts 37, 43, 46, 87, 94-95, 97, 105, 168
Carry flag see C flag data bus 29, 31
case sensitivity 11, 47,49, 181 data types 30
CC 150 DCB 139
CDP 100-101, 200 DCD 139
changes 181 DCFD 132, 140
CHR 149 DCFS 132, 140
Clanguage DCW 139

static variables ?2-178 DDT 10
CMF 137-138 debugging 10
CMFE 137-138 machine level 10
CMN 35 66-73, 76, 114, 197 source level 10
CMNP see CMN tables 10

214

DEF 150
dependency lists 24
dialogue boxes see application (dialogue box name)
directives 47, 49, 139-144, 211
see also directive name
DVE 136-137

E

ELSE 153-155

END 51, 141

ENDIAN 23, 147

ENDIF 153-155

ENTRY 144,172, 211

EOR 66-73, 151

EQU 145

errors 9, 14, 19, 142, 183-188
browser 9, 19

escapes 11

exception vectors see hardware vectors

exceptions 35, 37, 40-46, 167-169
priority system 45
see also exception names

EXP 136-137

EXPORT 142, 211

expressions 149-151

F

FALSE 51, 147

Fast Interrupt mode see FIQ mode

FDV 136-137

FIQ 40-41, 46, 167, 168-169
latency 46

FIQ disable flag 35, 38, 40, 41, 45

FIO mode 32,37, 41, 168

FIX 135

flags see flag names

S

floating point 117-138, 144, 171
available systems 118
C flag 126, 138
denormalised numbers 125
division by zero 127

double extended precision 121
expanded packed decimal 123, 126

exponents 120-123

IEEE double precision 120
IEEE single precision 120
inexact results 128
infinities 120-123, 127
invalid operations 127
NaNs 120-123, 125, 127
number formats 119-123
number input 131

overflow 128

packed decimal 122, 126
precision 119

rounding 135

store loading directives 132
synchronous operation 126
underflow 128

writeback 134

FLT 135
FML 136-137
FN 132, 145

fp see registers (names)
FPREGARGS 142
FRD 136-137

G

GBL 13,49, 146
GET 9,17, 141, 142

H

hardware vectors 37, 168
see also exceptions

Index

215

icons see application (icon name)

[F153-155

image files 7, 10, 21

immediate constants see constants (immediate)
IMPORT 142,172, 211

INCLUDE 9, 142
include file searching 9
INDEX 149

initialising memory see memory (initialising)
installation 1
instruction set 29-30
instructions
block data transfer 30, 32, 42, 43, 88-95
branches 33, 35, 42, 63-65
conversions |14
coprocessor data operations 100-101
coprocessor data transfers 102-105
coprocessor register transfers 106-108
data processing 30, 35, 55, 66-73, 197, 201
floating point coprocessor data
operations 136-137
floating point copracessor data
transfer 132-133
floating point coprocessor multiple data
transfer 133-135
floating point coprocessor register
transfer 135
floating point coprocessor status
transfer 137-138
further 114-116
multiplies 78-82, 109, 195
PSR transfer 36, 37, 38, 74-77
single data swap 96-97
single data transfer 30, 43, 48, 55, 83-87
software interrupt 35, 37, 44, 98-99, 101, 171
SWI 35
timings 54
undefined 37, 44, 46, 62, 101, 109, 133, 195,
200, 204
Interrupt mode see IRQ mode
interrupts 35

216

e

ip see registers (names)
IRQ 41, 168
latency 46
IRC disable flag 35, 38, 40, 41, 42, 43, 44, 45, 168
IRQ mode 32, 33, 37, 41

K

KEEP 141, 211

L

labels 47, 50
local 50
LAND 151
layout of memory see memory (laying out)
LCL 49, 146, 159
LDC 102-105, 203, 207, 207-208
LDF 132-133, 207
LDM 88-95 144, 196, 198-199 203, 204, 206
LDR 83-87, 116, 196, 202, 208-209
LLDRB see LDR
LEADR 211
LEAF 142
LEFT 150
LEN 149
LEOR 151
LFM 133-135
LGN 136-137
libraries 7
Link 2,7, 24, 47
Debug 10
Module 173
link register see LR
listings 15-17, 154
options 143
literals 116, 141
floating point 133
LNK 17
LNOT 150
LOG 136-137

o R T R R R S

Logical Shift Left see [.SL.
Logical Shift Rightsee LSR
LOR 151

LR 133,35, 40, 63-65 167, 171
LSL 55, 58

LSR 55, 59

LTORG 133, 141

M

MACRO 158-159
macros 155, 157-163, 211
labels 50
names |1
nesting 161
parameters 158, 160-161
prototype statements 158-159
Make 7, 22 24
MCR 106-108
memaory
initialising 139-140
interface 30
laying out 140-141
reserving 139
MEND 143, 159
menus see application (menu name)
MEXIT 160
MLA 78-80, 201, 205
MNF 136-137
MOD 150
modes 32, 36, 37, 167-168
changing 35, 70, 77, 197
flags 35, 40
privileged see privileged modes
see also mode names
modules 7,40, 171-173
MOV 66-73, 114, 115, 116
MRC [06-108
MRS 74-77
MSR 74-77
MUF 136-137
MUL 78-80, 196, 201, 205

Index

e o e

multiplication 191-192, 193
see also instructions (multiplies)
multiplier 29, 31
MVFE 136-137
MVN 66-73, 114, 115, 116

N

N flag 35, 69, 76-77
Negative flag see N flag
NOFP 131, 144
NOINIT 48

no-op 195, 201

NOT 149

NRM 136-157
numbers see constants

O

ObjAsm 2, 7-25
Auto run 20
Auto save 20
C strings 11
cacheing 13
command line 18, 22-25
Command line (menu option) 10
CPU 12
Cross reference 17
Debug 10
Define 12
Display 20
Errors to file 14
Help 20
icon bar menu 20
Include 9
Length 16
Listing 15
MaxCache 13
No APCS registers |1
NoCache 13
NoTerse 15, 154

217

index

N

Options 20

Others 18

output 18-19

Run 9, 10

Save options 20

SetUp dialogue box 7, 8-10

SetUp menu 8

Source 8,9

Suppress warnings 14

Throwback 9

Upper case |1

Width 16

Work directory 17
object files 7, 21, 47, 142
operators 149-151

addition and logical 151

binary 150-151

boolean 151

multiplicative 150

precedence 149, 150

relational 151

shifts 150
string manipulation 150
unary 149-150

OPT 143, 147

OR 151

ORG 49, 115, 141, 211

origin 141

ORR 66-73

OS_ChangeEnvironment 167
OS_ClaimPracessorVector 168
output 18, 20

Overflow flag see V flag

P

PC 33, 34-35, 36, 38, 39, 40, 63-65, 71, 86, 108,
144,147,167, 197,198, 201, 202, 204-205

PIC 48

pipeline 30, 31, 54, 64, 197, 207

POL 136-137

POW 136-137

218

e e s

prefetch aborts 42-43, 200
pre-veneers 167
PrintLib example 175-177
privileged modes 32, 36, 39
user bank transfer 93, 198-199
processor configurations see configurations
processor modes see modes
processor status register see PSR
program counter see PC
PSR 34-35, 38,40, 54, 55,64, 69, 79, 82, 167, 197,
198

R

R13 see SP
R14 see LR
R15 see PC and PSR
random numbers 190
RDF 136-137
READONLY 48
REENTRANT 48
registers 31, 32-35, 38-39
bank organisation 33, 38
floating point 118
floating point control 118, 129-130
floating point status 118, 124-128
names |1, 24,47, 145
see also register names
REL 48
relocatable modules see modules
__RelocCode 172
repetitive assembly 156
reserving memory see memory (reserying)
resets 45
RFC 135
RFS 135
RIGHT 150
RISC OS 165-178
RLIST 144
RMF 136-137
RN 145
Rn and rn see registers (names)

Index

RND [36-137

ROL 150

ROR 61, 150

Rotate Right see ROR
Rotate Right with Extend see RRX
rotates 55-62, 71
ROUT 50

RPW 136-137

RRX 55, 62

RSB 66-773

RSC 66-73

RSF 136-137

S

saved program status register see SPSR
SBC 66-73, 114
semaphores 96
SET 13, 49, 146, 159
SFM 133-135
shift types 57-62
shifts 55-62, 70
amount 57
mnemonics 57
SHL 150
SHR 150
sign extension 192
SIN 136-137
sl see registers (names)
SMLAL 81-82, 193
SMULL 81-82, 193
software interrupts 44, 46
source files 142
line length 47
SP 33
SPSR 36, 39, 40, 74-77
SQT 136-137
SrcEdit 19
stack pointer see SP
stack-limit checking 24
stacks 89-92 134
STC 102-105, 203, 207

STF 132-133, 207

STM 88-95, 144, 198-199, 203, 205, 206
STR 83-87, 147, 149, 202
STRB see STR

strings see constants

STRONG 211

SUB 66-73, 114, 115
subroutines 64

SUBT 143

SUF 136-137

summary 19, 20

Supervisor mode see SVC mode

SVC mode 32, 33, 37,42, 43,44, 45,98, 171

SWI 98-99 101, 171, 200

SWP 96-97, 203

symbols 17,49, 116, 142, 145-147
external 139
length 49
local 141

T

TAN 136-137
TEQ 35, 66-73, 76, 197
TEQP see TEQ
throwback 19
titles 143
tools 5-25

common features 7, 19
TRUE 51, 147
TST 35, 66-73, 76, 197
TSTP see TST
TTL 143

typographic conventions see conventions

U

UMLAL 81-82, 193
UMULL 81-82, 193
UND mode 37, 39, 44

219

Index

o o o

undefined instructions see instructions

(undefined)
Undefined mode see UND mode
URD 136-137

User mode 32, 35, 37

Vv

Vilag 35, 69, 76-77

VAR 147

variables 11, 12-13, 145-147
global 146
local 146, 159

see also variable names
Vi see registers (names)

W

warnings 14
WEAK 142
WEND 156, 160
WFC 135

WFS 135

WHILE 156, 160
work directory 17

Z

Z flag 35,69, 76-77
Zero flag see Z flag

220

R

’

S e O R

Reader's Comment Form

Acorn Assembler, Issup 1
0484,233

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue;

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

How would you classity your experience with computers?

Used computers before Experienced User Programmer Experienced Programmer

Cut out (or photocopy) and post lo: Your name and address:

Dept RC, Technical Publications |
Acorn Computers Limited |
Acorn House, Vision Park

Histon, Cambridge CB4 4AE | This information will only be used to get in touch with you in case we wish to explore your !
England comments further

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

Notes

